Do you want to publish a course? Click here

Topological effects in magnetic platinum nano-particles

72   0   0.0 ( 0 )
 Added by Roberto D'Agosta
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic properties of platinum nano-particles ranging in size from a few to up 300 atoms are investigated through first-principle calculations. It is found that the total magnetization depends strongly on the local atomic rearrangements, with an enhancement around five-fold axis. This is due to an elongation of the nearest neighbor distance together with a contraction of the 2$^{nd}$ distance, resulting in a net interatomic partial charge transfer from the atoms lying on the sub-surface layer (donor) towards the vertexes (acceptor).



rate research

Read More

59 - E. Aydiner 2021
The nano-particle systems under theoretically and experimentally investigation because of the potential applications in the nano-technology such as drug delivery, ferrofluids mechanics, magnetic data storage, sensors, magnetic resonance imaging, and cancer therapy. Recently, it is reported that interacting nano-particles behave as spin-glasses and experimentally show that the relaxation of these systems obeys stretched exponential i.e., KWW relaxation. Therefore, in this study, considering the interacting nano-particle systems we model the relaxation and investigate frequency and temperature behaviour depends on slow relaxation by using a simple operator formalism. We show that relaxation deviates from Debye and obeys to KWW in the presence of the memory effects in the system. Furthermore, we obtain the frequency and temperature behaviour depend on KWW relaxation. We conclude that the obtained results are consistent with experimental results and the simple model, presented here, is very useful and pedagogical to discuss the slow relaxation of the interacting nano-particles.
127 - Jue Jiang , Di Xiao , Fei Wang 2019
The quantum anomalous Hall (QAH) effect is a quintessential consequence of non-zero Berry curvature in momentum-space. The QAH insulator harbors dissipation-free chiral edge states in the absence of an external magnetic field. On the other hand, the topological Hall (TH) effect, a transport hallmark of the chiral spin textures, is a consequence of real-space Berry curvature. While both the QAH and TH effects have been reported separately, their coexistence, a manifestation of entangled chiral edge states and chiral spin textures, has not been reported. Here, by inserting a TI layer between two magnetic TI layers to form a sandwich heterostructure, we realized a concurrence of the TH effect and the QAH effect through electric field gating. The TH effect is probed by bulk carriers, while the QAH effect is characterized by chiral edge states. The appearance of TH effect in the QAH insulating regime is the consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occur during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures potentially provides a unique platform for proof-of-concept dissipationless spin-textured spintronic applications.
208 - M. N. Chen , W. C. Chen , 2021
In this work, we propose a ferromagnetic Bi$_2$Se$_3$ as a candidate to hold the coexistence of Weyl- and nodal-line semimetal phases, which breaks the time reversal symmetry. We demonstrate that the type-I Weyl semimetal phase, type-I-, type-II- and their hybrid nodal-line semimetal phases can arise by tuning the Zeeman exchange field strength and the Fermi velocity. Their topological responses under U(1) gauge field are also discussed. Our results raise a new way for realizing Weyl and nodal-line semimetals and will be helpful in understanding the topological transport phenomena in three-dimensional material systems.
Low temperature magnetic properties were investigated on the gold nano particles (GNP) with an average size of 11.5 nm, assembled with molecules of ruthenium complex (Ru0) and phenylboronic acid (B0) by the proton nuclear resonance (1H-NMR) and susceptibility measurements. The temperature dependence of the NMR shift and the uniform susceptibility was described as the sum of the Curie-Weiss term and a positive constant term. From the former, the average number of Ru0 on each GNP was estimated to be 118, which is 23 % of the calculation. The finite positive constant term shows a clear contrast with the well-known fact that the bulk gold is diamagnetic. Finally, a disappearance of the motional narrowing effect in the proton NMR spectra below 60 K indicates that the wavering motion of Ru0 complexes on GNP at room temperature is frozen at low temperatures.
We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for anisotropic Fermi surface systems. The conductivity exhibits a local minimum as doping varies owing to the Van Hove singularity in the density of states originated from the saddle point in the surface states band structure. Suppression of the interband scattering of the charge carriers at high-energy Dirac points results in a maximum in the electrical conductivity. Whenever the Fermi level passes an extremum in the conductivity, Seebeck coefficient changes sign. In addition, it is revealed that profound thermoelectric effects can be attained around these extrema points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا