Do you want to publish a course? Click here

Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

101   0   0.0 ( 0 )
 Added by Fei Li
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beams energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rms) down to 1.4% with its peak energy 190 MeV and charge 1.7 pC. The changing trend of beam energy spread indicates that longer acceleration may further lower the energy spread down to less than 1%, which may have potential in applications related to future coherent light source driven by laser-plasma accelerators.



rate research

Read More

233 - X. L. Xu 2014
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity $I$, lasers with longer/shorter wavelength $lambda$ have larger/smaller ponderomotive potential ($propto I lambda^2$). The two color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g. a $10 micrometer$ CO$_2$ laser) due to its very large ponderomotive potential. On the other hand, short wavelength laser can produce electrons with very small residual momenta ($p_perpsim a_0sim sqrt{I}lambda$) inside the wake, leading to electron beams with very small normalized emittances (tens of $ anometer$). Using particle-in-cell simulations we show that a $sim10 femtosecond$ electron beam with $sim4 picocoulomb$ of charge and a normalized emittance of $sim 50 anometer$ can be generated by combining a 10 $micrometer $ driving laser with a 400 $ anometer$ injection laser, which is an improvement of more than one order of magnitude compared to the typical results obtained when a single wavelength laser used for both the wake formation and ionization injection.
A new method for the generation of a train of pulses from a single high-energy, ultra short pulse is presented, suited for Resonant Multi-Pulse Ionization injection. The method is based on different transverse portion of the pulse being delayed by a mask sectioned in concentric zones with different thicknesses, in order to deliver multiple laser pulses. The mask is placed right before the last focusing parabola. A hole in the middle of the mask lets part of the original pulse to pass through to drive electron injection. In this paper a full numerical modelling of this scheme is presented. In particular we discuss the spatial and temporal profile of the pulses emerging from the mask and how they are related to the radius and thickness of each section.
173 - J. Kim , T. Wang , V. Khudik 2021
Single cycle laser pulse propagating inside a plasma causes controllable asymmetric plasma electron expulsion from laser according to laser carrier envelope phase (CEP) and forms an oscillating plasma bubble. Bubbles transverse wakefield is modified, exhibiting periodic modulation. Injection scheme for a laser wakefield accelerator combining a single cycle low frequency laser pulse and a many cycle high frequency laser pulse is proposed. The co-propagating laser pulses form a transversely oscillating wakefield which efficiently traps and accelerates electrons from background plasma. By tuning the initial CEP of the single cycle laser pulse, injection dynamics can be modified independently of the many cycle pulse, enabling control of electron bunches spatial profile.
77 - N. Pathak , A. Zhidkov , Y. Sakai 2019
The multi-stage technique for laser driven acceleration of electrons become a critical part of full-optical, jitter-free accelerators. Use of several independent laser drivers and shorter length plasma targets allows the stable and reproducible acceleration of electron bunches (or beam) in the GeV energies with lower energy spreads. At the same time the charge coupling, necessary for efficient acceleration in the consecutive acceleration stage(s), depends collectively on the parameters of the injected electron beam, the booster stage, and the non-linear transverse dynamics of the electron beam in the laser pulse wake. An unmatched electron beam injected in the booster stage(s), and its non-linear transverse evolution may result in perturbation and even reduction of the field strength in the acceleration phase of the wakefield. Analysis and characterization of charge coupling in multi-stage laser wakefield acceleration (LWFA) become ultimately important. Here, we investigate two-stage LWFA via fully relativistic multi-dimensional particle-in-cell simulations, and underlying the most critical parameters, which affect the efficient coupling and acceleration of the electron beam in the booster stage.
138 - F. Li 2013
The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا