Do you want to publish a course? Click here

Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths

252   0   0.0 ( 0 )
 Added by Xinlu Xu
 Publication date 2014
  fields Physics
and research's language is English
 Authors X. L. Xu




Ask ChatGPT about the research

Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity $I$, lasers with longer/shorter wavelength $lambda$ have larger/smaller ponderomotive potential ($propto I lambda^2$). The two color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g. a $10 micrometer$ CO$_2$ laser) due to its very large ponderomotive potential. On the other hand, short wavelength laser can produce electrons with very small residual momenta ($p_perpsim a_0sim sqrt{I}lambda$) inside the wake, leading to electron beams with very small normalized emittances (tens of $ anometer$). Using particle-in-cell simulations we show that a $sim10 femtosecond$ electron beam with $sim4 picocoulomb$ of charge and a normalized emittance of $sim 50 anometer$ can be generated by combining a 10 $micrometer $ driving laser with a 400 $ anometer$ injection laser, which is an improvement of more than one order of magnitude compared to the typical results obtained when a single wavelength laser used for both the wake formation and ionization injection.



rate research

Read More

173 - J. Kim , T. Wang , V. Khudik 2021
Single cycle laser pulse propagating inside a plasma causes controllable asymmetric plasma electron expulsion from laser according to laser carrier envelope phase (CEP) and forms an oscillating plasma bubble. Bubbles transverse wakefield is modified, exhibiting periodic modulation. Injection scheme for a laser wakefield accelerator combining a single cycle low frequency laser pulse and a many cycle high frequency laser pulse is proposed. The co-propagating laser pulses form a transversely oscillating wakefield which efficiently traps and accelerates electrons from background plasma. By tuning the initial CEP of the single cycle laser pulse, injection dynamics can be modified independently of the many cycle pulse, enabling control of electron bunches spatial profile.
A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ~2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.
100 - F. Li , C. J. Zhang , Y. Wan 2015
An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beams energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rms) down to 1.4% with its peak energy 190 MeV and charge 1.7 pC. The changing trend of beam energy spread indicates that longer acceleration may further lower the energy spread down to less than 1%, which may have potential in applications related to future coherent light source driven by laser-plasma accelerators.
We generate inverse Compton scattered X-rays in both linear and nonlinear regimes with a 250 MeV laser wakefield electron accelerator and plasma mirror by retro-reflecting the unused drive laser light to scatter from the accelerated electrons. We characterize the X-rays using a CsI(Tl) voxelated scintillator that measures their total energy and divergence as a function of plasma mirror distance from the accelerator exit. At each plasma mirror position, these X-ray properties are correlated with the measured fluence and inferred intensity of the laser pulse after driving the accelerator to determine the laser strength parameter $a_0$. The results show that ICS X-rays are generated at $a_0$ ranging from $0.3pm0.1$ to $1.65pm0.25$, and exceed the strength of co-propagating bremsstrahlung and betatron X-rays at least ten-fold throughout this range of $a_0$.
Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا