Do you want to publish a course? Click here

Stochastic Bifurcations induced by correlated Noise in a Birhythmic van der Pol System

166   0   0.0 ( 0 )
 Added by Giovanni Filatrella
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effects of exponentially correlated noise on birhythmic van der Pol type oscillators. The analytical results are obtained applying the quasi-harmonic assumption to the Langevin equation to derive an approximated Fokker-Planck equation. This approach allows to analytically derive the probability distributions as well as the activation energies associated to switching between coexisting attractors. The stationary probability density function of the van der Pol oscillator reveals the influence of the correlation time on the dynamics. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that noise intensity and correlation time can be treated as bifurcation parameters. Comparing the analytical and numerical results, we find good agreement both when the frequencies of the attractors are about equal or when they are markedly different.



rate research

Read More

We propose to compute the effective activation energy, usually referred to a pseudopotential or quasipotential, of a birhythmic system -- a van der Pol like oscillator -- in the presence of correlated noise. It is demonstrated, with analytical techniques and numerical simulations, that the correlated noise can be taken into account and one can retrieve the low noise rate of the escapes. We thus conclude that a pseudopotential, or an effective activation energy, is a realistic description for the stability of birhythmic attractors also in the presence of correlated noise.
The analysis of a birhythmic modified van der Pol type oscillator driven by periodic excitation and L`evy noise shows the possible occurrence of coherence resonance and stochastic resonance. The frequency of the harmonic excitation in the neighborhood of one of the limit cycles influences the coherence of the dynamics on the time scale of intrawell oscillations. The autocorrelation function, the power spectral density and the signal-to-noise-ratio used in this analysis are shown to be maximized for an appropriate choice of the noise intensity. A proper adjustment of the L`evy noise intensity enhances the output power spectrum of the system, that is, promotes stochastic resonance. Thus, the robustness of the resonance, that seems to occur also in the presence of nonstandard noise, is examined using standard measures. The initial selection of the attractor seems to have an influence on the coherence, while the skewness parameter of the L`evy noise has not a notable impact on the resonant effect.
The equation of the Van der Pol oscillator, being characterized by a dissipative term, is non-Lagrangian. Appending an additional degree of freedom we bring the equation in the frame of action principle and thus introduce a one-way coupled system. As with the Van der Pol oscillator, the coupled system also involves only one parameter that controls the dynamics. The response system is described by a linear differential equation coupled nonlinearly to the drive system. In the linear approximation the equations of our coupled system coincide with those of the Bateman dual system (a pair of damped and anti-damped harmonic oscillators). The critical point of damped and anti-damped oscillators are stable and unstable for all physical values of the frictional coefficient $mu$. Contrarily, the critical points of the drive- (Van der Pol) and response systems depend crucially on the values of $mu$. These points are unstable for $mu > 0$ while the critical point of the drive system is stable and that of the response system is unstable for $mu < 0$. The one-way coupled system exhibits bifurcations which are different from those of the uncoupled Van der Pol oscillator. Our system is chaotic and we observe phase synchronization in the regime of dynamic chaos only for small values of $mu$.
An efficient technique is introduced for model inference of complex nonlinear dynamical systems driven by noise. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range %of parameters of dynamical models. It is applied to clinically measured blood pressure signal for the simultaneous inference of the strength, directionality, and the noise intensities in the nonlinear interaction between the cardiac and respiratory oscillations.
Langevin models are frequently used to model various stochastic processes in different fields of natural and social sciences. They are adapted to measured data by estimation techniques such as maximum likelihood estimation, Markov chain Monte Carlo methods, or the non-parametric direct estimation method introduced by Friedrich et al. The latter has the distinction of being very effective in the context of large data sets. Due to their $delta$-correlated noise, standard Langevin models are limited to Markovian dynamics. A non-Markovian Langevin model can be formulated by introducing a hidden component that realizes correlated noise. For the estimation of such a partially observed diffusion a different version of the direct estimation method was introduced by Lehle et al. However, this procedure includes the limitation that the correlation length of the noise component is small compared to that of the measured component. In this work we propose another version of the direct estimation method that does not include this restriction. Via this method it is possible to deal with large data sets of a wider range of examples in an effective way. We discuss the abilities of the proposed procedure using several synthetic examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا