No Arabic abstract
Let $K$ be a field and $f:mathbb{P}^N to mathbb{P}^N$ a morphism. There is a natural conjugation action on the space of such morphisms by elements of the projective linear group $text{PGL}_{N+1}$. The group of automorphisms, or stabilizer group, of a given $f$ for this action is known to be a finite group. In this article, we address two mainly computational problems concerning automorphism groups. Given a finite subgroup of $text{PGL}_{N+1}$ determine endomorphisms of $mathbb{P}^N$ with that group as subgroup of its automorphism group. In particular, we show that every finite subgroup occurs infinitely often and discuss some associated rationality problems. Inversely, given an endomorphism determine its automorphism group. In particular, we extended the Faber-Manes-Viray fixed-point algorithm for $mathbb{P}^1$ to endomorphisms of $mathbb{P}^2$. A key component is an explicit bound on the size of the automorphism group depending on the degree of the endomorphism.
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the automorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.
The Hasse Weil bound restricts the number of points of a curve which are defined over a finite field; if the number of points meets this bound, the curve is called maximal. Giulietti and Korchmaros introduced a curve C_3 which is maximal over F_{q^6} and determined its automorphism group. Garcia, Guneri, and Stichtenoth generalized this construction to a family of curves C_n, indexed by an odd integer n greater than or equal to 3, such that C_n is maximal over F_{q^{2n}}. In this paper, we determine the automorphism group Aut(C_n) when n > 3; in contrast with the case n=3, it fixes the point at infinity on C_n. The proof requires a new structural result about automorphism groups of curves in characteristic p such that each Sylow p-subgroup has exactly one fixed point. MSC:11G20, 14H37.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For example, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
In this article we study automorphisms of Toeplitz subshifts. Such groups are abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity is non superlinear, we prove that the automorphism group is, modulo a finite cyclic group, generated by a unique root of the shift. In the subquadratic complexity case, we show that the automorphism group modulo the torsion is generated by the roots of the shift map and that the result of the non superlinear case is optimal. Namely, for any $varepsilon > 0$ we construct examples of minimal Toeplitz subshifts with complexity bounded by $C n^{1+epsilon}$ whose automorphism groups are not finitely generated. Finally, we observe the coalescence and the automorphism group give no restriction on the complexity since we provide a family of coalescent Toeplitz subshifts with positive entropy such that their automorphism groups are arbitrary finitely generated infinite abelian groups with cyclic torsion subgroup (eventually restricted to powers of the shift).
We show that word hyperbolicity of automorphism groups of graph products $G_Gamma$ and of Coxeter groups $W_Gamma$ depends strongly on the shape of the defining graph $Gamma$. We also characterized those $Aut(G_Gamma)$ and $Aut(W_Gamma)$ in terms of $Gamma$ that are virtually free.