Do you want to publish a course? Click here

Subdiffusion, Anomalous Diffusion and Propagation of a Particle Moving in Random and Periodic Media

58   0   0.0 ( 0 )
 Added by Shradha Mishra
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the motion of a single particle moving on a two-dimensional square lattice whose sites are occupied by right and left rotators. These left and right rotators deterministically rotate the particles velocity to the right or left, respectively and emph{flip} orientation from right to left or from left to right after scattering the particle. We study three types of configurations of left and right rotators, which we think of as types of media, through with the particle moves. These are completely random (CR), random periodic (RP), and completely periodic (CP) configurations. For CR configurations the particles dynamics depends on the ratio $r$ of right to left scatterers in the following way. For small $rsimeq0$, when the configuration is nearly homogeneous, the particle subdiffuses with an exponent of 2/3, similar to the diffusion of a macromolecule in a crowded environment. Also, the particles trajectory has a fractal dimension of $d_fsimeq4/3$, comparable to that of a self-avoiding walk. As the ratio increases to $rsimeq 1$, the particles dynamics transitions from subdiffusion to anomalous diffusion with a fractal dimension of $d_fsimeq 7/4$, similar to that of a percolating cluster in 2-d. In RP configurations, which are more structured than CR configurations but also randomly generated, we find that the particle has the same statistic as in the CR case. In contrast, CP configurations, which are highly structured, typically will cause the particle to go through a transient stage of subdiffusion, which then abruptly changes to propagation. Interestingly, the subdiffusive stage has an exponent of approximately 2/3 and a fractal dimension of $d_fsimeq4/3$, similar to the case of CR and RP configurations for small $r$.



rate research

Read More

The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can be also somewhat alternative to each other, e.g., Continuous Time Random Walk (CTRW) and Fractional Brownian Motion (FBM). To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modeling of velocity dynamics. The complexity of the medium is parameterized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particles dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.
71 - F. Le Vot , E. Abad , S. B. Yuste 2017
Expanding media are typical in many different fields, e.g. in Biology and Cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties. Here, we focus on such effects when the diffusion process is described by the Continuous Time Random Walk (CTRW) model. For the case where the jump length and the waiting time probability density functions (pdfs) are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Levy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Greens function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. For a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This Big Crunch effect stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained. Our results confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Levy flights, we quantify this effect by means of the so-called Levy horizon.
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
In this minireview we present the main results regarding the transport properties of stochastic movement with relocations to known positions. To do so, we formulate the problem in a general manner to see several cases extensively studied during the last years as particular situations within a framework of random walks with memory. We focus on (i) stochastic motion with resets to its initial position followed by a waiting period, and (ii) diffusive motion with memory-driven relocations to previously visited positions. For both of them we show how the overall transport regime may be actively modified by the details of the relocation mechanism.
A recent paper [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York) 1949] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a Generalized Langevin Equation the Khinchin theorem holds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا