Do you want to publish a course? Click here

X-ray optical systems: from metrology to Point Spread Function

93   0   0.0 ( 0 )
 Added by Daniele Spiga
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the problems often encountered in X-ray mirror manufacturing is setting proper manufacturing tolerances to guarantee an angular resolution - often expressed in terms of Point Spread Function (PSF) - as needed by the specific science goal. To do this, we need an accurate metrological apparatus, covering a very broad range of spatial frequencies, and an affordable method to compute the PSF from the metrology dataset. [...] However, the separation between these spectral ranges is difficult do define exactly, and it is also unclear how to affordably combine the PSFs, computed with different methods in different spectral ranges, into a PSF expectation at a given X-ray energy. For this reason, we have proposed a method entirely based on the Huygens-Fresnel principle to compute the diffracted field of real Wolter-I optics, including measured defects over a wide range of spatial frequencies. Owing to the shallow angles at play, the computation can be simplified limiting the computation to the longitudinal profiles, neglecting completely the effect of roundness errors. Other authors had already proposed similar approaches in the past, but only in far-field approximation, therefore they could not be applied to the case of Wolter-I optics, in which two reflections occur in sequence within a short range. The method we suggest is versatile, as it can be applied to multiple reflection systems, at any X-ray energy, and regardless of the nominal shape of the mirrors in the optical system. The method has been implemented in the WISE code, successfully used to explain the measured PSFs of multilayer-coated optics for astronomic use, and of a K-B optical system in use at the FERMI free electron laser.



rate research

Read More

270 - Hanshin Lee 2012
A new concept of using focus-diverse point spread functions (PSFs) for modal wavefront sensing (WFS) is explored. This is based on relatively straightforward image moment analysis of measured PSFs, which differentiates it from other focal-plane wavefront sensing techniques (FPWFS). The presented geometric analysis shows that the image moments are non-linear functions of wave aberration coefficients, but notes that focus-diversity (FD) essentially decouples the coefficients of interest from others, resulting in a set of linear equations whose solution corresponds to modal coefficient estimates. The presented proof-of-concept simulations suggest the potential of the concept in WFS with strongly aberrated high SNR objects in particular.
We present results of inflight calibration of the point spread function (PSF) of the Soft X-ray Telescope (SXT-S) that focuses X-ray onto the pixel array of the Soft X-ray Spectrometer system (SXS). We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9~ksec and the limited knowledge of the systematic uncetainties, we find that the raytracing model of 1.2 half-power-diameter (HPD) is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 sigma). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.
To enhance the reflectivity of X-ray mirrors beyond the critical angle, multilayer coatings are required. Interface imperfections in the multilayer growth process are known to cause non-specular scattering and degrade the mirror optical performance; therefore, it is important to predict the amount of X-ray scattering from the rough topography of the outer surface of the coating, which can be directly measured, e.g., with an Atomic Force Microscope (AFM). This kind of characterization, combined with X-ray reflectivity measurements to assess the deep multilayer stack structure, can be used to model the layer roughening during the growth process via a well-known roughness evolution model. In this work, X-ray scattering measurements are performed and compared with simulations obtained from the modeled interfacial Power Spectral Densities (PSDs) and the modeled Crossed Spectral Densities for all the couples of interfaces. We already used this approach in a previous work for periodic multilayers; we now show how this method can be extended to graded multilayers. The upgraded code is validated for both periodic and graded multilayers, with a good accord between experimental data and model findings. Doing this, different kind of defects observed in AFM scans are included in the PSD analysis. The subsequent data-model comparison enables us to recognize them as surface contamination or interfacial defects that contribute to the X-ray scattering of the multilayer.
122 - Yi Nang , Jin-Yuan Liao , Na Sai 2020
We make the in-orbit calibration to the point-spread functions (PSFs) of the collimators of the Hard X-ray Modulation Telescope with the scanning observation of the Crab. We construct the empirical adjustments to the theoretically calculated geometrical PSFs. The adjustments contain two parts: a rotating matrix to adjust the directional deviation of the collimators and a paraboloidal function to correct the inhomogeneity of the real PSFs. The parameters of the adjusting matrices and paraboloidal functions are determined by fitting the scanning data with lower scanning speed and smaller intervals during the calibration observations. After the PSF calibration, the systematic errors in source localization in the Galactic plane scanning survey are 0.010 deg, 0.015 deg, 0.113 deg for the Low-Energy Telescope (LE), the Medium-Energy telescope (ME) and the High-Energy telescope (HE), respectively; meanwhile, the systematic errors in source flux estimation are 1.8%, 1.6%, 2.7% for LE, ME and HE, respectively.
We have used coherent, resonant, x-ray magnetic speckle patterns to measure the statistical evolution of the microscopic magnetic domains in perpendicular magnetic films as a function of the applied magnetic field. Our work constitutes the first direct, ensemble-averaged study of microscopic magnetic return point memory, and demonstrates the profound impact of interfacial roughness on this phenomenon. At low fields, the microscopic magnetic domains forget their past history with an exponential field dependence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا