Do you want to publish a course? Click here

The USFD Spoken Language Translation System for IWSLT 2014

79   0   0.0 ( 0 )
 Added by Mortaza Doulaty
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The University of Sheffield (USFD) participated in the International Workshop for Spoken Language Translation (IWSLT) in 2014. In this paper, we will introduce the USFD SLT system for IWSLT. Automatic speech recognition (ASR) is achieved by two multi-pass deep neural network systems with adaptation and rescoring techniques. Machine translation (MT) is achieved by a phrase-based system. The USFD primary system incorporates state-of-the-art ASR and MT techniques and gives a BLEU score of 23.45 and 14.75 on the English-to-French and English-to-German speech-to-text translation task with the IWSLT 2014 data. The USFD contrastive systems explore the integration of ASR and MT by using a quality estimation system to rescore the ASR outputs, optimising towards better translation. This gives a further 0.54 and 0.26 BLEU improvement respectively on the IWSLT 2012 and 2014 evaluation data.



rate research

Read More

Spoken language translation (SLT) is becoming more important in the increasingly globalized world, both from a social and economic point of view. It is one of the major challenges for automatic speech recognition (ASR) and machine translation (MT), driving intense research activities in these areas. While past research in SLT, due to technology limitations, dealt mostly with speech recorded under controlled conditions, todays major challenge is the translation of spoken language as it can be found in real life. Considered application scenarios range from portable translators for tourists, lectures and presentations translation, to broadcast news and shows with live captioning. We would like to present PJIITs experiences in the SLT gained from the Eu-Bridge 7th framework project and the U-Star consortium activities for the Polish/English language pair. Presented research concentrates on ASR adaptation for Polish (state-of-the-art acoustic models: DBN-BLSTM training, Kaldi: LDA+MLLT+SAT+MMI), language modeling for ASR & MT (text normalization, RNN-based LMs, n-gram model domain interpolation) and statistical translation techniques (hierarchical models, factored translation models, automatic casing and punctuation, comparable and bilingual corpora preparation). While results for the well-defined domains (phrases for travelers, parliament speeches, medical documentation, movie subtitling) are very encouraging, less defined domains (presentation, lectures) still form a challenge. Our progress in the IWSLT TED task (MT only) will be presented, as well as current progress in the Polish ASR.
This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 8.1 BLEU improvements over the benchmark on the MuST-C test set and is even approaching the results of a strong cascade solution. For text-to-text simultaneous translation, we explore the best practice to optimize the wait-k model. As a result, our final submitted systems exceed the benchmark at around 7 BLEU on the same latency regime. We will publish our code and model to facilitate both future research works and industrial applications. This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 7.9 BLEU improvements over the benchmark on the MuST-C test set and is even approaching the results of a strong cascade solution. For text-to-text simultaneous translation, we explore the best practice to optimize the wait-k model. As a result, our final submitted systems exceed the benchmark at around 7 BLEU on the same latency regime. We release our code and model at url{https://github.com/bytedance/neurst/tree/master/examples/iwslt21} to facilitate both future research works and industrial applications.
142 - Liang Ding , Di Wu , Dacheng Tao 2021
This paper describes the University of Sydney& JDs joint submission of the IWSLT 2021 low resource speech translation task. We participated in the Swahili-English direction and got the best scareBLEU (25.3) score among all the participants. Our constrained system is based on a pipeline framework, i.e. ASR and NMT. We trained our models with the officially provided ASR and MT datasets. The ASR system is based on the open-sourced tool Kaldi and this work mainly explores how to make the most of the NMT models. To reduce the punctuation errors generated by the ASR model, we employ our previous work SlotRefine to train a punctuation correction model. To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning. For model structure, we tried auto-regressive and non-autoregressive models, respectively. In addition, we proposed two novel pre-train approaches, i.e. textit{de-noising training} and textit{bidirectional training} to fully exploit the data. Extensive experiments show that adding the above techniques consistently improves the BLEU scores, and the final submission system outperforms the baseline (Transformer ensemble model trained with the original parallel data) by approximately 10.8 BLEU score, achieving the SOTA performance.
We investigate the problem of simultaneous machine translation of long-form speech content. We target a continuous speech-to-text scenario, generating translated captions for a live audio feed, such as a lecture or play-by-play commentary. As this scenario allows for revisions to our incremental translations, we adopt a re-translation approach to simultaneous translation, where the source is repeatedly translated from scratch as it grows. This approach naturally exhibits very low latency and high final quality, but at the cost of incremental instability as the output is continuously refined. We experiment with a pipeline of industry-grade speech recognition and translation tools, augmented with simple inference heuristics to improve stability. We use TED Talks as a source of multilingual test data, developing our techniques on English-to-German spoken language translation. Our minimalist approach to simultaneous translation allows us to easily scale our final evaluation to six more target languages, dramatically improving incremental stability for all of them.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained completely from scratch to translate unseen sentences. Our method consists of a pyramidal-bidirectional recurrent network combined with a convolutional network to output sentence-level spectrograms in the target language. Empirically, our model achieves competitive performance with state-of-the-art methods on multiple languages and can generalize to unseen speakers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا