No Arabic abstract
Within the class of heterotic line bundle models, we argue that N=1 vacua which lead to a small number of low-energy chiral families are preferred. By imposing an upper limit on the volume of the internal manifold, as required in order to obtain finite values of the four-dimensional gauge couplings, and validity of the supergravity approximation we show that, for a given manifold, only a finite number of line bundle sums are consistent with supersymmetry. By explicitly scanning over this finite set of line bundle models on certain manifolds we show that, for a sufficiently small volume of the internal manifold, the family number distribution peaks at small values, consistent with three chiral families. The relation between the maximal number of families and the gauge coupling is discussed, which hints towards a possible explanation of the family problem.
The compactification from the eleven-dimensional Hov{r}ava-Witten orbifold to five-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific $SU(4)$ vector bundle leading to the heterotic standard model in the observable sector. Within the context of strongly coupled heterotic M-theory, a formalism for consistent hidden-sector bundles associated with a single line bundle is presented, and a specific line bundle is introduced as a concrete example. Anomaly cancellation and the associated bulk space five-branes are discussed in this context, as is the constraint that the hidden sector bundle be compatible with the slope-stability requirements of the observable sector $SU(4)$ gauge bundle. The further compactification to a four-dimensional effective theory on a linearized BPS double domain wall is then presented to order $kappa_{11}^{4/3}$. Specifically, the generic constraints required for anomaly cancellation and the restrictions imposed by positive squared gauge couplings to order $kappa_{11}^{4/3}$ are presented in detail. Three additional constraints are imposed, one guaranteeing that the $S^{1}/{mathbb{Z}}_{2}$ orbifold length is sufficiently larger than the average Calabi-Yau radius, and two enforcing that the hidden sector be compatible with both the unification mass scale and unified gauge coupling of the $SO(10)$ group in the observable sector. Finally, the expression for the Fayet-Iliopoulos term associated with an anomalous $U(1)$ symmetry is presented and its role in $N=1$ supersymmetry in the low-energy effective theory is discussed. It is shown that $N=1$ supersymmetry can be preserved by cancelling the tree-level and genus-one contributions against each another.
Grand unification groups (GUTs) are constructed from SO(32) heterotic string via $Z_{12-I}$ orbifold compactification. So far, most phenomenological studies from string compactification relied on $EE8$ heterotic string, and this invites the SO(32) heterotic string very useful for future phenomenological studies. Here, spontaneous symmetry breaking is achieved by Higgsing of the anti-symmetric tensor representations of SU($N$). The anti-SU($N$) presented in this paper is a completely different class from the flipped-SU($N$)s from the spinor representations of SO($2N$). Here, we realize chiral representations: $tsixoplus 5cdot ineb $ for a SU(9) GUT and $3{{ten}_Loplus {fiveb}_L}$ for a SU(5)$$ GUT. In particular, we confirm that the non-Abelian anomalies of SU(9) gauge group vanish and hence our compactification scheme achieves the key requirement. We also present the Yukawa couplings, in particular for the heaviest fermion, $t$, and lightest fermions, neutrinos. In the supersymmetric version, we present a scenario how supersymmetry can be broken dynamically via the confining gauge group SU(9). Three families in the visible sector are interpreted as the chiral spectra of SU(5)$$ GUT.
We present a class of smooth supersymmetric heterotic solutions with a non-compact Eguchi-Hanson space. The non-compact geometry is embedded as the base of a six-dimensional non-Kahler manifold with a non-trivial torus fiber. We solve the non-linear anomaly equation in this background exactly. We also define a new charge that detects the non-Kahlerity of our solutions.
Using Z3 asymmetric orbifolds in heterotic string theory, we construct N=1 SUSY three-generation models with the standard model gauge group SU(3)_C times SU(2)_L times U(1)_Y and the left-right symmetric group SU(3)_C times SU(2)_L times SU(2)_R times U(1)_{B-L}. One of the models possesses a gauge flavor symmetry for the Z3 twisted matter.
We search for realistic supersymmetric standard-like models from SO(32) heterotic string theory on factorizable tori with multiple magnetic fluxes. Three chiral ganerations of quarks and leptons are derived from the adjoint and vector representations of SO(12) gauge groups embedded in SO(32) adjoint representation. Massless spectra of our models also include Higgs fields, which have desired Yukawa couplings to quarks and leptons at the tree-level.