Do you want to publish a course? Click here

Bayesian Latent Pattern Mixture Models for Handling Attrition in Panel Studies With Refreshment Samples

146   0   0.0 ( 0 )
 Added by Yajuan Si
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Many panel studies collect refreshment samples---new, randomly sampled respondents who complete the questionnaire at the same time as a subsequent wave of the panel. With appropriate modeling, these samples can be leveraged to correct inferences for biases caused by non-ignorable attrition. We present such a model when the panel includes many categorical survey variables. The model relies on a Bayesian latent pattern mixture model, in which an indicator for attrition and the survey variables are modeled jointly via a latent class model. We allow the multinomial probabilities within classes to depend on the attrition indicator, which offers additional flexibility over standard applications of latent class models. We present results of simulation studies that illustrate the benefits of this flexibility. We apply the model to correct attrition bias in an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.



rate research

Read More

Panel studies typically suffer from attrition, which reduces sample size and can result in biased inferences. It is impossible to know whether or not the attrition causes bias from the observed panel data alone. Refreshment samples - new, randomly sampled respondents given the questionnaire at the same time as a subsequent wave of the panel - offer information that can be used to diagnose and adjust for bias due to attrition. We review and bolster the case for the use of refreshment samples in panel studies. We include examples of both a fully Bayesian approach for analyzing the concatenated panel and refreshment data, and a multiple imputation approach for analyzing only the original panel. For the latter, we document a positive bias in the usual multiple imputation variance estimator. We present models appropriate for three waves and two refreshment samples, including nonterminal attrition. We illustrate the three-wave analysis using the 2007-2008 Associated Press-Yahoo! News Election Poll.
A general Bayesian framework is introduced for mixture modelling and inference with real-valued time series. At the top level, the state space is partitioned via the choice of a discrete context tree, so that the resulting partition depends on the values of some of the most recent samples. At the bottom level, a different model is associated with each region of the partition. This defines a very rich and flexible class of mixture models, for which we provide algorithms that allow for efficient, exact Bayesian inference. In particular, we show that the maximum a posteriori probability (MAP) model (including the relevant MAP context tree partition) can be precisely identified, along with its exact posterior probability. The utility of this general framework is illustrated in detail when a different autoregressive (AR) model is used in each state-space region, resulting in a mixture-of-AR model class. The performance of the associated algorithmic tools is demonstrated in the problems of model selection and forecasting on both simulated and real-world data, where they are found to provide results as good or better than state-of-the-art methods.
We propose Dirichlet Process Mixture (DPM) models for prediction and cluster-wise variable selection, based on two choices of shrinkage baseline prior distributions for the linear regression coefficients, namely the Horseshoe prior and Normal-Gamma prior. We show in a simulation study that each of the two proposed DPM models tend to outperform the standard DPM model based on the non-shrinkage normal prior, in terms of predictive, variable selection, and clustering accuracy. This is especially true for the Horseshoe model, and when the number of covariates exceeds the within-cluster sample size. A real data set is analyzed to illustrate the proposed modeling methodology, where both proposed DPM models again attained better predictive accuracy.
We propose a new, flexible model for inference of the effect of a binary treatment on a continuous outcome observed over subsequent time periods. The model allows to seperate association due to endogeneity of treatment selection from additional longitudinal association of the outcomes and hence unbiased estimation of dynamic treatment effects. We investigate the performance of the proposed method on simulated data and employ it to reanalyse data on the longitudinal effects of a long maternity leave on mothers earnings after their return to the labour market.
The development of a new diagnostic test ideally follows a sequence of stages which, amongst other aims, evaluate technical performance. This includes an analytical validity study, a diagnostic accuracy study and an interventional clinical utility study. Current approaches to the design and analysis of the diagnostic accuracy study can suffer from prohibitively large sample sizes and interval estimates with undesirable properties. In this paper, we propose a novel Bayesian approach which takes advantage of information available from the analytical validity stage. We utilise assurance to calculate the required sample size based on the target width of a posterior probability interval and can choose to use or disregard the data from the analytical validity study when subsequently inferring measures of test accuracy. Sensitivity analyses are performed to assess the robustness of the proposed sample size to the choice of prior, and prior-data conflict is evaluated by comparing the data to the prior predictive distributions. We illustrate the proposed approach using a motivating real-life application involving a diagnostic test for ventilator associated pneumonia. Finally, we compare the properties of the proposed approach against commonly used alternatives. The results show that by making better use of existing data from earlier studies, the assurance-based approach can not only reduce the required sample size when compared to alternatives, but can also produce more reliable sample sizes for diagnostic accuracy studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا