Do you want to publish a course? Click here

First-principles materials design of high-performing bulk photovoltaics with the LiNbO$_3$ structure

56   0   0.0 ( 0 )
 Added by Steve Young
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bulk photovoltaic effect is a long-known but poorly understood phenomenon. Recently, however, the multiferroic bismuth ferrite has been observed to produce strong photovoltaic response to visible light, suggesting that the effect has been underexploited as well. Here we present three polar oxides in the LiNbO$_3$ structure that we predict to have band gaps in the 1-2 eV range and very high bulk photovoltaic response: PbNiO$_3$, Mg$_{1/2}$Zn$_{1/2}$PbO$_3$, and LiBiO$_3$. All three have band gaps determined by cations with $d^{10}s^0$ electronic configurations, leading to conduction bands composed of cation $s$-orbitals and O $p$-orbitals. This both dramatically lowers the band gap and increases the bulk photovoltaic response by as much as an order of magnitude over previous materials, demonstrating the potential for high-performing bulk photovoltaics.



rate research

Read More

Intrinsic polar metals are rare, especially in oxides, because free electrons screen electric fields in a metal and eliminate the internal dipoles that are needed to break inversion symmetry. Here we use first-principles high-throughput structure screening to predict a new polar metal in bulk and thin film forms. After screening more than 1000 different crystal structures, we find that ordered BiPbTi2O6 can crystallize in three polar and metallic structures, which can be transformed between via pressure or strain. In a heterostructure of layered BiPbTi2O6 and PbTiO3, multiple states with different relative orientations of BiPbTi2O6 polar displacements, and PbTiO3 polarization, can be stabilized. At room temperature, the interfacial coupling enables electric fields to first switch PbTiO3 polarization and subsequently drive 180{deg} change of BiPbTi2O6 polar displacements. At low temperatures, the heterostructure provides a tunable tunnelling barrier and might be used in multi-state memory devices.
163 - v{S}. Masys , V. Jonauskas 2013
We present a first-principles investigation of structural and elastic properties of experimentally observed phases of bulk SrRuO$_3$ - namely orthorhombic, tetragonal, and cubic - by applying density functional theory (DFT) approximations. At first, we focus our attention on the accuracy of calculated lattice constants in order to find out DFT approaches that best represent the crystalline structure of SrRuO$_3$, since many important physical quantities crucially depend on change in volume. Next, we evaluate single-crystal elastic constants, mechanical stability, and macroscopic elastic parameters trying to at least partially compensate for the existing lack of information about these fundamental features of SrRuO$_3$. Finally, we analyze the anomalous behavior of low-temperature orthorhombic phase under $C_{44}$ related shear deformation. It turns out that at critical strain values the system exhibits a distinct deviation from the initial behavior which results in an isosymmetric phase transition. Moreover, under $C_{44}$ related shear deformation tetragonal SrRuO3 becomes mechanically unstable raising an open question of what makes it experimentally observable at high temperatures.
The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal and organic halides [textit{e.g.} (NH$_4$)PbI$_3$ and (CH$_3$NH$_3$)PbI$_3$], are largely unknown. The materials are semiconductors with direct band gaps at the boundary of the first Brillouin zone. The calculated dielectric response and band gaps show an orientation dependence, with a low barrier for rotation of the organic cations. Due to the electric dipole of the methylammonium cation, a photoferroic effect may be accessible, which could enhance carrier collection.
While the basic principles and limitations of conventional solar cells are well understood, relatively little attention has gone toward maximizing the potential efficiency of photovoltaic devices based on shift currents. In this work, we outline simple design principles for the optimization of shift currents for frequencies near the band gap, derived from the analysis of a general effective model. The use of a novel sum rule allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions via Berry connections in addition to standard band structure. We use our approach to identify two new classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS. We introduce tight-binding models for these systems, and show that they exhibit the largest shift current responsivities at the band edge reported so far. Moreover, exploring the parameter space of these models we find photoresponsivities that can exceed $100$ mA/W. Our results show how the study of the shift current via effective models allows one to improve the possible efficiency of devices based on this mechanism and better grasp their potential to compete with conventional solar cells.
Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of bulk photovoltaic (PV) effect for ferroelectric photovoltaics, in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbI$_{3-x}$Cl$_{x}$ from first principles. We find that these materials give approximately three times larger shift current PV response to near-IR and visible light than the prototypical ferroelectric photovoltaic BiFeO$_3$. The molecular orientations of CH$_3$NH$_3^{+}$ can strongly affect the corresponding PbI$_3$ inorganic frame so as to alter the magnitude of the shift current response. Specifically, configurations with dipole moments aligned in parallel distort the inorganic PbI$_3$ frame more significantly than configurations with near net zero dipole, yielding a larger shift current response. Furthermore, we explore the effect of Cl substitution on shift current, and find that Cl substitution at the equatorial site induces a larger response than does substitution at the apical site.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا