Do you want to publish a course? Click here

Transport Conductivity of Graphene at RF and Microwave Frequencies

88   0   0.0 ( 0 )
 Added by Andrea Ferrari
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure graphene coplanar waveguides from direct current (DC) to 13.5GHz and show that the apparent resistance (in the presence of parasitic impedances) has an quadratic frequency dependence, but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current conductivity is the same as the DC value and the imaginary part~0. The graphene channel is modelled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time~2.1ps, highlighting the influence of alternating current (AC) electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analogue field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.



rate research

Read More

123 - P. Jiang , A. F. Young , W. Chang 2010
We have measured the microwave conductance of mechanically exfoliated graphene at frequencies up to 8.5 GHz. The conductance at 4.2 K exhibits quantum oscillations, and is independent of the frequency.
We probe the electron transport properties in the shell of GaAs/In0.2Ga0.8As core/shell nanowires at high electric fields using optical pump / THz probe spectroscopy with broadband THz pulses and peak electric fields up to 0.6 MV/cm. The plasmon resonance of the photoexcited charge carriers exhibits a systematic redshift and a suppression of its spectral weight for THz driving fields exceeding 0.4 MV/cm. This behavior is attributed to the intervalley electron scattering resulting in the increase of the average electron effective mass and the corresponding decrease of the electron mobility by about 2 times at the highest fields. We demonstrate that the increase of the effective mass is non-uniform along the nanowires and takes place mainly in their middle part, leading to a spatially inhomogeneous carrier response. Our results quantify the nonlinear transport regime in GaAs-based nanowires and show their high potential for development of nano-devices operating at THz frequencies.
We have fabricated UV-sensitive photodetectors based on colloidal CdS nanocrystals and graphene. The nanocrystals act as a sensitizer layer that improves light harvesting leading to high responsivity of the detector. Despite the slow relaxation of the photogenerated charges in the nanocrystal film, faster processes allowed to detect pulses up to a repetition rate of 2 kHz. We have performed time-resolved analysis of the processes occurring in our hybrid system, and discuss possible photo-induced charge transfer mechanisms.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response, we see a strong peak in $sigma_{1} (omega)$ at $sim$2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.
Top-gated graphene transistors operating at high frequencies (GHz) have been fabricated and their characteristics analyzed. The measured intrinsic current gain shows an ideal 1/f frequency dependence, indicating an FET-like behavior for graphene transistors. The cutoff frequency fT is found to be proportional to the dc transconductance gm of the device. The peak fT increases with a reduced gate length, and fT as high as 26 GHz is measured for a graphene transistor with a gate length of 150 nm. The work represents a significant step towards the realization of graphene-based electronics for high-frequency applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا