Do you want to publish a course? Click here

Conserved Charge Susceptibilities in a Chemically Frozen Hadronic Gas

67   0   0.0 ( 0 )
 Added by Todd Springer
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In a hadronic gas with three conserved charges (electric charge, baryon number, and strangeness) we employ the hadron resonance gas model to compute both diagonal and off-diagonal susceptibilities. We model the effect of chemical freeze-out in two ways: one in which all particle numbers are conserved below the chemical freeze-out temperature and one which takes into account resonance decays. We then briefly discuss possible implications these results may have on two active areas of research, hydrodynamic fluctuations and the search for the QCD critical point.



rate research

Read More

We simultaneously incorporate two common extensions of the hadron resonance gas model, namely the addition of extra, unconfirmed resonances to the particle list and the excluded volume repulsive interactions. We emphasize the complementary nature of these two extensions and identify combinations of conserved charge susceptibilities that allow to constrain them separately. In particular, ratios of second-order susceptibilities like $chi_{11}^{BQ}/chi_2^B$ and $chi_{11}^{BS}/chi_2^B$ are sensitive only to the baryon spectrum, while fourth-to-second order ratios like $chi_4^B/chi_2^B$, $chi_{31}^{BS}/chi_{11}^{BS}$, or $chi_{31}^{BQ}/chi_{11}^{BQ}$ are mainly determined by repulsive interactions. Analysis of the available lattice results suggests the presence of both the extra states in the baryon-strangeness sector and the repulsive baryonic interaction, with indications that hyperons have a smaller repulsive core than non-strange baryons. The modified hadron resonance gas model presented here significantly improves the description of lattice QCD susceptibilities at chemical freeze-out and can be used for the analysis of event-by-event fluctuations in heavy-ion collisions.
We estimate the shear and the bulk viscous coefficients for a hot hadronic gas mixture constituting of pions and nucleons. The viscosities are evaluated in the relativistic kinetic theory approach by solving the transport equation in the relaxation time approximation for binary collisions ($pipi$,$pi N$ and $NN$). Instead of vacuum cross-sections usually used in the literature we employ in-medium scattering amplitudes in the estimation of the relaxation times. The modified cross-sections for $pipi$ and $pi N$ scattering are obtained using one-loop modified thermal propagators for $rho$, $sigma$ and $Delta$ in the scattering amplitudes which are calculated using effective interactions. The resulting suppression of the cross sections at finite temperature and baryon density is observed to significantly affect the $T$ and $mu_N$ dependence of the viscosities of the system.
Bulk matter produced in heavy ion collisions has multiple conserved quantum numbers like baryon number, strangeness and electric charge. The diffusion process of these charges can be described by a diffusion matrix describing the interdependence of diffusion of different charges. The diffusion coefficient matrix is estimated here from the Boltzmann kinetic theory for the hadronic phase within relaxation time approximation. In the derivation for the same, we impose the Landau-Lifshitz conditions of fit. This leads to e.g. the diagonal diffusion coefficients to be manifestly positive definite. The explicit calculations are performed within the ambit of hadron resonance gas model with and without excluded volume corrections. It is seen that the off-diagonal components can be significant to affect the charge diffusion in a fluid with multiple conserved charges. The excluded volume correction effects is seen to be not significant in the estimation of the elements of the diffusion matrix.
Using a covariant and angular-momentum-conserved chiral transport model, which takes into account the spin-orbit interactions of chiral fermions in their scatterings via the side jumps, we study the quark spin polarization in quark matter. For a system of rotating and unpolarized massless quarks in an expanding box, we find that side jumps can dynamically polarize the quark spin and result in a final quark spin polarization consistent with that of thermally equilibrated massless quarks in a self-consistent vorticity field. For the quark matter produced in noncentral relativistic heavy ion collisions, we find that in the medium rest frame both the quark local spin polarizations in the direction perpendicular to the reaction plane and along the longitudinal beam direction show an azimuthal angle dependence in the transverse plane similar to those observed in experiments for the Lambda hyperon.
Microscopic transport approaches are the tool to describe the non-equilibrium evolution in low energy collisions as well as in the late dilute stages of high-energy collisions. Here, a newly developed hadronic transport approach, SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced. The overall bulk dynamics in low energy heavy ion collisions is shown including the excitation function of elliptic flow employing several equations of state. The implications of this new approach for dilepton production are discussed and preliminary results for afterburner calculations at the highest RHIC energy are presented and compared to previous UrQMD results. A detailed understanding of a hadron gas with vacuum properties is required to establish the baseline for the exploration of the transition to the quark-gluon plasma in heavy ion collisions at high net baryon densities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا