Do you want to publish a course? Click here

Modelling the Mechanics and Hydrodynamics of Swimming E. coli

59   0   0.0 ( 0 )
 Added by Roland G. Winkler
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hy- drodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is com- posed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vor- tices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force- dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.



rate research

Read More

Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection, and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming (tens of microns and below). The focus is on the fundamental flow physics phenomena occurring in this inertia-less realm, and the emphasis is on the simple physical picture. We review the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming, such as resistance matrices for solid bodies, flow singularities, and kinematic requirements for net translation. Then we review classical theoretical work on cell motility: early calculations of the speed of a swimmer with prescribed stroke, and the application of resistive-force theory and slender-body theory to flagellar locomotion. After reviewing the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers, and the optimization of locomotion strategies.
We briefly describe the similarities of the experiments of sperm motion in microfluidic strictures by Zafeeani et al. in 2019 (Sci. Adv. 5, eaav21111, 2019) and those by Altshuler et al. in 2013 (Soft Matter 9, 1864, 2013). We shortly discuss the hydrodynamic elements justifying the strong resemblance between the two types of experiments, and suggest that other previous results in E. coli motion (Soft Matter 11, 6248, 2015) may shed further light on the understanding of sperm migration.
We present a study of the hydrodynamics of an active particle, a model squirmer, in an envi- ronment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid crystalline director can lead to re-orientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behaviour arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterise and guide spherical microswimmers in the bulk.
The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques.
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the confinement length: a self-assembled pump is formed. Particles likewise confined in a narrow channel show a generic upstream flux in Poiseuille flow: chiral swimming is not required.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا