Do you want to publish a course? Click here

Hydrodynamics defines the stable swimming direction of spherical squirmers in a nematic liquid crystal

167   0   0.0 ( 0 )
 Added by Juho Lintuvuori
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the hydrodynamics of an active particle, a model squirmer, in an envi- ronment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid crystalline director can lead to re-orientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behaviour arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterise and guide spherical microswimmers in the bulk.



rate research

Read More

We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC) film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (nonuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection, and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming (tens of microns and below). The focus is on the fundamental flow physics phenomena occurring in this inertia-less realm, and the emphasis is on the simple physical picture. We review the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming, such as resistance matrices for solid bodies, flow singularities, and kinematic requirements for net translation. Then we review classical theoretical work on cell motility: early calculations of the speed of a swimmer with prescribed stroke, and the application of resistive-force theory and slender-body theory to flagellar locomotion. After reviewing the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers, and the optimization of locomotion strategies.
Active matter exhibits remarkable collective behavior in which flows, continuously generated by active particles, are intertwined with the orientational order of these particles. The relationship remains poorly understood as the activity and order are difficult to control independently. Here we demonstrate important facets of this interplay by exploring dynamics of swimming bacteria in a liquid crystalline environment with pre-designed periodic splay and bend in molecular orientation. The bacteria are expelled from the bend regions and condense into polar jets that propagate and transport cargo unidirectionally along the splay regions. The bacterial jets remain stable even when the local concentration exceeds the threshold of bending instability in a non-patterned system. Collective polar propulsion and different role of bend and splay are explained by an advection-diffusion model and by numerical simulations that treat the system as a two-phase active nematic. The ability of prepatterned liquid crystalline medium to streamline the chaotic movements of swimming bacteria into polar jets that can carry cargo along a predesigned trajectory opens the door for potential applications in cell sorting, microscale delivery and soft microrobotics.
We report a dynamic light scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic ($mathrm{N_{TB}}$) phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic and one hydrodynamic mode in the $mathrm{N_{TB}}$ phase, and a single nonhydrodynamic plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations) in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-deGennes expansion of the free energy density in terms of heliconical director and helical polarization fields that characterize the $mathrm{N_{TB}}$ structure, with the latter serving as the primary order parameter. A coarse-graining approximation simplifies the theoretical analysis, and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.
We study the flow behaviour of a twist-bend nematic $(N_{TB})$ liquid crystal. It shows three distinct shear stress ($sigma$) responses in a certain range of temperatures and shear rates ($dot{gamma}$). In Region-I, $sigmasimsqrt{dot{gamma}}$, in region-II, the stress shows a plateau, characterised by a power law $sigmasim{dot{gamma}}^{alpha}$, where $alphasim0.1-0.4$ and in region-III, $sigmasimdot{gamma}$. With increasing shear rate, $sigma$ changes continuously from region-I to II, whereas it changes discontinuously with a hysteresis from region-II to III. In the plateau (region-II), we observe a dynamic stress fluctuations, exhibiting regular, periodic and quasiperiodic oscillations under the application of steady shear. The observed spatiotemporal dynamics in our experiments are close to those were predicted theoretically in sheared nematogenic fluids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا