Do you want to publish a course? Click here

Gamma conjecture via mirror symmetry

76   0   0.0 ( 0 )
 Added by Hiroshi Iritani
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class G_F associated to Eulers $Gamma$-function. We illustrate in the case of toric varieties, toric complete intersections and Grassmannians how this conjecture follows from mirror symmetry. We also prove that Gamma conjecture is compatible with taking hyperplane sections, and give a heuristic argument how the mirror oscillatory integral and the Gamma class for the projective space arise from the polynomial loop space.



rate research

Read More

We show that there is an extra dimension to the mirror duality discovered in the early nineties by Greene-Plesser and Berglund-Hubsch. Their duality matches cohomology classes of two Calabi--Yau orbifolds. When both orbifolds are equipped with an automorphism $s$ of the same order, our mirror duality involves the weight of the action of $s^*$ on cohomology. In particular, it matches the respective $s$-fixed loci, which are not Calabi-Yau in general. When applied to K3 surfaces with non-symplectic automorphism $s$ of odd prime order, this provides a proof that Berglund-Hubsch mirror symmetry implies K3 lattice mirror symmetry replacing earlier case-by-case treatments.
The Dirac-Higgs bundle is a hyperholomorphic bundle over the moduli space of stable Higgs bundles of coprime rank and degree. We extend this construction to the case of arbitrary rank $n$ and degree $0$, studying the associated connection and curvature. We then generalize to the case of rank $n > 1$ the Nahm transform defined by Frejlich and the second named author, which, out of a stable Higgs bundle, produces a vector bundle with connection over the moduli spaces of rank $1$ Higgs bundles. By performing the higher rank Nahm transform we obtain a hyperholomorphic bundle over the moduli space of stable Higgs bundles of rank $n$ and degree $0$, twisted by the gerbe of liftings of the projective universal bundle. Our hyperholomorphic vector bundles over the moduli space of stable Higgs bundles can be seen, in the physicists language, as $(BBB)$-branes twisted by the above mentioned gerbe. We then use the Fourier-Mukai and Fourier-Mukai-Nahm transforms to describe the corresponding dual branes restricted to the smooth locus of the Hitchin fibration. The dual branes are checked to be $(BAA)$-branes supported on a complex Lagrangian multisection of the Hitchin fibration.
137 - Asher Auel 2011
The Milnor conjecture has been a driving force in the theory of quadratic forms over fields, guiding the development of the theory of cohomological invariants, ushering in the theory of motivic cohomology, and touching on questions ranging from sums of squares to the structure of absolute Galois groups. Here, we survey some recent work on generalizations of the Milnor conjecture to the context of schemes (mostly smooth varieties over fields of characteristic not 2). Surprisingly, a version of the Milnor conjecture fails to hold for certain smooth complete p-adic curves with no rational theta characteristic (this is the work of Parimala, Scharlau, and Sridharan). We explain how these examples fit into the larger context of an unramified Milnor question, offer a new approach to the question, and discuss new results in the case of curves over local fields and surfaces over finite fields.
We prove a tropical mirror symmetry theorem for descendant Gromov-Witten invariants of the elliptic curve, generalizing a tropical mirror symmetry theorem for Hurwitz numbers of the elliptic curve. For the case of the elliptic curve, the tropical version of mirror symmetry holds on a fine level and easily implies the equality of the generating series of descendant Gromov-Witten invariants of the elliptic curve to Feynman integrals. To prove tropical mirror symmetry for elliptic curves, we investigate the bijection between graph covers and sets of monomials contributing to a coefficient in a Feynman integral. We also soup up the traditional approach in mathematical physics to mirror symmetry for the elliptic curve, involving operators on a Fock space, to give a proof of tropical mirror symmetry for Hurwitz numbers of the elliptic curve. In this way, we shed light on the intimate relation between the operator approach on a bosonic Fock space and the tropical approach.
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford stack is isomorphic to the Saito structure associated to the mirror Landau-Ginzburg potential. We give a GKZ-style presentation of the quantum D-module, and a combinatorial description of quantum cohomology as a quantum Stanley-Reisner ring. We establish the convergence of the mirror isomorphism and of quantum cohomology in the big and equivariant setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا