Do you want to publish a course? Click here

Measuring the Top Yukawa Coupling at 100 TeV

235   0   0.0 ( 0 )
 Added by Torben Schell
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We propose a measurement of the top Yukawa coupling at a 100 TeV hadron collider, based on boosted Higgs and top decays. We find that the top Yukawa coupling can be measured to 1%, with excellent handles for reducing systematic and theoretical uncertainties, both from side bands and from $tbar{t}H/tbar{t}Z$ ratios.



rate research

Read More

The cross section for the reaction $e^+e^- to tbar{t} H$ depends sensitively on the top quark Yukwawa coupling $lambda_t$. We calculate the rate for $tbar{t}H$ production, followed by the decay $Hto bbar{b}$, for a Standard Model Higgs boson with 100 < m_H <130 GeV. We interface with ISAJET to generate QCD radiation, hadronization and particle decays. We also calculate the dominant $tbar{t}bbar{b}$ backgrounds from electroweak and QCD processes. We consider both semileptonic and fully hadronic decays of the $tbar{t}$ system. In our analysis, we attempt full reconstruction of the top quark and W boson masses in the generated events. The invariant mass of the remaining b-jets should show evidence of Higgs boson production. We estimate the accuracy with which $lambda_t$ can be measured at a linear e^+e^- collider. Our results, including statistical but not systematic errors, show that the top quark Yukawa coupling can be measured to 6-8 % accuracy with 1000 fb^{-1} at $E_{CM}=1 TeV$, assuming 100 % efficiency for b-jet tagging. The accuracy of the measurement drops to 17-22 % if only a 60 % efficiency for b-tagging is achieved.
Measurement of the top-Yukawa coupling is important to understand the fermion mass generation mechanism and dynamics of electroweak symmetry breaking. We discuss the top quark anomalous couplings which can be described by higher dimensional operators. We investigate the process $e^-e^+ to W^-W^+ ubar u to t bar t ubar u$ to study the contribution of the anomalous top-Higgs coupling to the cross section. The effect of the dimension-six top-Higgs interaction on the cross section can be a few hundred percent greater than the SM prediction. Such a large effect can be measured at the International Linear Collider.
Higgs pair production provides a unique handle for measuring the strength of the Higgs self interaction and constraining the shape of the Higgs potential. Among the proposed future facilities, a circular 100 TeV proton-proton collider would provide the most precise measurement of this crucial quantity. In this work, we perform a detailed analysis of the most promising decay channels and derive the expected sensitivity of their combination, assuming an integrated luminosity of 30 ab$^{-1}$. Depending on the assumed systematic uncertainties, we observe that the Higgs self-coupling will be measured with a precision in the range 3.4 - 7.8% at 68% confidence level.
One of the detector benchmark processes investigated for the SiD Detailed Baseline Design (DBD) is given by: e+e- -> ttH, where H is the Standard Model Higgs boson of mass 125 GeV. The study is carried out at a centre-of-mass energy of 1 TeV and assuming an integrated luminosity of 1 ab-1. The physics aim is a direct measurement of the top Yukawa coupling at the ILC. Higgs boson decays to beauty quark-antiquark pairs are reconstructed. The investigated final states contain eight jets or six jets, one charged lepton and missing energy. Additionally, four of the jets in signal events are caused by beauty quark decays. The analysis is based on a full simulation of the SiD detector using GEANT4. Beam-related backgrounds from gammagamma -> hadrons interactions and incoherent e+e- pairs are considered. This study addresses various aspects of the detector performance: jet clustering in complex hadronic final states, flavour-tagging and the identification of high energy leptons.
An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. We focus on the two b-jets plus diphotons final state, including possible enhancements in sensitivity by exploiting dihiggs recoils against a hard jet. We find that it should be possible to measure the trilinear self-coupling with 40% accuracy given 3/ab and 12% with 30/ab of data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا