Do you want to publish a course? Click here

Cosmological constraints on the neutron lifetime

184   0   0.0 ( 0 )
 Added by Luca Pagano
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive new constraints on the neutron lifetime based on the recent Planck 2015 observations of temperature and polarization anisotropies of the CMB. Under the assumption of standard Big Bang Nucleosynthesis, we show that Planck data constrains the neutron lifetime to $tau_n=(907 pm 69) , [text{s}]$ at $68 %$ c.l.. Moreover, by including the direct measurements of primordial Helium abundance of Aver et al. (2015) and Izotov et al. (2014), we show that cosmological data provide the stringent constraints $tau_n=(875 pm 19) , [text{s}]$ and $tau_n=(921 pm 11) , [text{s}]$ respectively. The latter appears to be in tension with neutron lifetime value quoted by the Particle Data Group ($tau_n=(880.3 pm 1.1) , [text{s}]$). Future CMB surveys as COrE+, in combination with a weak lensing survey as EUCLID, could constrain the neutron lifetime up to a $sim 6 , [text{s}]$ precision.



rate research

Read More

139 - L.A. Popa , A. Caramete 2010
For a robust interpretation of upcoming observations from PLANCK and LHC experiments it is imperative to understand how the inflationary dynamics of a non-minimally coupled Higgs scalar field with gravity may affect the determination of the inflationary observables. We make a full proper analysis of the WMAP7+SN+BAO dataset in the context of the non-minimally coupled Higgs inflation field with gravity. For the central value of the top quark pole mass m_T=171.3 GeV, the fit of the inflation model with non-minimally coupled Higgs scalar field leads to the Higgs boson mass between 143.7 and 167 GeV (95% CL). We show that the inflation driven by a non-minimally coupled scalar field to the Einstein gravity leads to significant constraints on the scalar spectral index and tensor-to-scalar ratio when compared with the similar constraints tensor to from the standard inflation with minimally coupled scalar field. We also show that an accurate reconstruction of the Higgs potential in terms of inflationary observables requires an improved accuracy of other parameters of the Standard Model of particle physics as the top quark mass and the effective QCD coupling constant.
181 - A. Avilez , C. Skordis 2013
We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using Cosmic Microwave Background data from Planck.We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength $G_{eff}$ today as the one measured on the Earth, $G_N$. In this case the BD parameter $omega$ is constrained to $omega > 692$ at the $99%$ confidence level, an order of magnitude improvement over previous constraints.In the second type the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of $omega > 890$ while $G_{eff}$ is constrained to $0.981 <frac{G_{eff}}{G_N} <1.285$ at the same confidence level. We argue that these constraints have greater validity than for the BD theory and are valid for any Horndeski theory, the most general second-order scalar-tensor theory, which approximates BD on cosmological scales. In this sense, our constraints place strong limits on possible modifications of gravity that might explain cosmic acceleration.
160 - Luca Amendola 2013
The effective anisotropic stress or gravitational slip $eta=-Phi/Psi$ is a key variable in the characterisation of the physical origin of the dark energy, as it allows to test for a non-minimal coupling of the dark sector to gravity in the Jordan frame. It is however important to use a fully model-independent approach when measuring $eta$ to avoid introducing a theoretical bias into the results. In this paper we forecast the precision with which future large surveys can determine $eta$ in a way that only relies on directly observable quantities. In particular, we do not assume anything concerning the initial spectrum of perturbations, nor on its evolution outside the observed redshift range, nor on the galaxy bias. We first leave $eta$ free to vary in space and time and then we model it as suggested in Horndeski models of dark energy. Among our results, we find that a future large scale lensing and clustering survey can constrain $eta$ to within 10% if $k$-independent, and to within 60% or better at $k=0.1 h/$Mpc if it is restricted to follow the Horndeski model.
When combining cosmological and oscillations results to constrain the neutrino sector, the question of the propagation of systematic uncertainties is often raised. We address this issue in the context of the derivation of an upper bound on the sum of the neutrino masses ($Sigma m_ u$) with recent cosmological data. This work is performed within the ${{mathrm{Lambda{CDM}}}}$ model extended to $Sigma m_ u$, for which we advocate the use of three mass-degenerate neutrinos. We focus on the study of systematic uncertainties linked to the foregrounds modelling in CMB data analysis, and on the impact of the present knowledge of the reionisation optical depth. This is done through the use of different likelihoods built from Planck data. Limits on $Sigma m_ u$ are derived with various combinations of data, including the latest Baryon Acoustic Oscillations (BAO) and Type Ia Supernovae (SN) results. We also discuss the impact of the preference for current CMB data for amplitudes of the gravitational lensing distortions higher than expected within the ${{mathrm{Lambda{CDM}}}}$ model, and add the Planck CMB lensing. We then derive a robust upper limit: $Sigma m_ u< 0.17hbox{ eV at }95% hbox{CL}$, including 0.01 eV of foreground systematics. We also discuss the neutrino mass repartition and show that todays data do not allow one to disentangle normal from inverted hierarchy. The impact on the other cosmological parameters is also reported, for different assumptions on the neutrino mass repartition, and different high and low multipole CMB likelihoods.
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $H(z)$ data and 1048 Supernovae data from Panteon, a lower limit for the mass of the scalar field was obtained, $m geq 5.1times 10^{-34} $eV and $H_0=69.5^{+2.0}_{-2.1}text{ km s}^{-1}text{Mpc}^{-1}$. Also, the present dark matter density parameter was obtained as $Omega_phi = 0.230^{+0.033}_{-0.031}$ at $2sigma$ confidence level. The results are in good agreement to standard model of cosmology, showing that SFDM model is viable in describing the dark matter content of the universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا