Do you want to publish a course? Click here

Modelling circumbinary protoplanetary disks: I. Fluid simulations of the Kepler-16 and 34 systems

222   0   0.0 ( 0 )
 Added by Stefan Lines
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kepler missions discovery of a number of circumbinary planets orbiting close (a_p < 1.1 au) to the stellar binary raises questions as to how these planets could have formed given the intense gravitational perturbations the dual stars impart on the disk. The gas component of circumbinary protoplanetary disks is perturbed in a similar manner to the solid, planetesimal dominated counterpart, although the mechanism by which disk eccentricity originates differs. This is the first work of a series that aims to investigate the conditions for planet formation in circumbinary protoplanetary disks. We present a number of hydrodynamical simulations that explore the response of gas disks around two observed binary systems: Kepler-16 and Kepler-34. We probe the importance of disk viscosity, aspect-ratio, inner boundary condition, initial surface density gradient, and self-gravity on the dynamical evolution of the disk, as well as its quasi steady-state profile. We find there is a strong influence of binary type on the mean disk eccentricity, e_d, leading to e_d = 0.02 - 0.08 for Kepler-16 and e_d = 0.10 - 0.15 in Kepler-34. The value of alpha-viscosity has little influence on the disk, but we find a strong increase in mean disk eccentricity with increasing aspect-ratio due to wave propagation effects. The choice of inner boundary condition only has a small effect on the surface density and eccentricity of the disk. Our primary finding is that including disk self-gravity has little impact on the evolution or final state of the disk for disks with masses less than 12.5 times that of the minimum-mass solar nebula. This finding contrasts with the results of self-gravity relevance in circumprimary disks, where its inclusion is found to be an important factor in describing the disk evolution.



rate research

Read More

Aims. We investigate the feasibility of planetesimal growth in circumbinary protoplanetary disks around the observed systems Kepler- 16 and Kepler-34 under the gravitational influence of a precessing eccentric gas disk. Methods. We embed the results of our previous hydrodynamical simulations of protoplanetary disks around binaries into an N-body code to perform 3D, high-resolution, inter-particle gravity-enabled simulations of planetesimal growth and dynamics that include the gravitational force imparted by the gas. Results. Including the full, precessing asymmetric gas disk generates high eccentricity orbits for planetesimals orbiting at the edge of the circumbinary cavity, where the gas surface density and eccentricity have their largest values. The gas disk is able to efficiently align planetesimal pericenters in some regions leading to phased, non-interacting orbits. Outside of these areas eccentric planetesimal orbits become misaligned and overlap leading to crossing orbits and high relative velocities during planetesimal collisions. This can lead to an increase in the number of erosive collisions that far outweighs the number of collisions that result in growth. Gravitational focusing from the static axisymmetric gas disk is weak and does not significantly alter collision outcomes from the gas free case. Conclusions. Due to asymmetries in the gas disk, planetesimals are strongly perturbed onto highly eccentric orbits. Where planetesimals orbits are not well aligned, orbit crossings lead to an increase in the number of erosive collisions. This makes it difficult for sustained planetesimal accretion to occur at the location of Kepler-16b and Kepler-34b and we therefore rule out in-situ growth. This adds further support to our initial suggestions that most circumbinary planets should form further out in the disk and migrate inwards.
Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses (transits) of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Suns mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.
The dispersal phase of planet-forming disks via winds driven by irradiation from the central star and/or magnetic fields in the disk itself is likely to play an important role in the formation and evolution of planetary systems. Current theoretical models lack predictive power to adequately constrain observations. We present PRIZMO, a code for evolving thermochemistry in protoplanetary disks capable of being coupled with hydrodynamical and multi-frequency radiative transfer codes. We describe the main features of the code, including gas and surface chemistry, photochemistry, microphysics, and the main cooling and heating processes. The results of a suite of benchmarks, which include photon-dominated regions, slabs illuminated by radiation spectra that include X-ray, and well-established cooling functions evaluated at different temperatures show good agreement both in terms of chemical and thermal structures. The development of this code is an important step to perform quantitative spectroscopy of disk winds, and ultimately the calculation of line profiles, which is urgently needed to shed light on the nature of observed disk winds.
Recent observations from NASAs Kepler mission detected the first planets in circumbinary orbits. The question we try to answer is where these planets formed in the circumbinary disk and how far inside they migrated to reach their present location. We investigate the first and more delicate phase of planet formation when planetesimals accumulate to form planetary embryos. We use the hydrodynamical code FARGO to study the evolution of the disk and of a test population of planetesimals embedded in it. With this hybrid hydrodynamical--N--body code we can properly account for the gas drag force on the planetesimals and for the gravitational force of the disk on them. The numerical simulations show that the gravity of the eccentric disk on the planetesimal swarm excites their eccentricities to values much larger than those induced by the binary perturbations only within 10 AU from the stars. Moreover, the disk gravity prevents a full alignment of the planetesimal pericenters. Both these effects lead to large impact velocities, beyond the critical value for erosion. Planetesimals accumulation in circumbinary disks appears to be prevented close to the stellar pair by the gravitational perturbations of the circumbinary disk. The observed planets possibly formed in the outer regions of the disk and then migrated inside by tidal interaction with the disk.
Dust gaps and rings appear ubiquitous in bright protoplanetary disks. Disk-planet interaction with dust-trapping at the edges of planet-induced gaps is one plausible explanation. However, the sharpness of some observed dust rings indicate that sub-mm-sized dust grains have settled to a thin layer in some systems. We test whether or not such dust around gas gaps opened by planets can remain settled by performing three-dimensional, dust-plus-gas simulations of protoplanetary disks with an embedded planet. We find planets massive enough to open gas gaps stir small, sub-mm-sized dust grains to high disk elevations at the gap edges, where the dust scale-height can reach ~70% of the gas scale-height. We attribute this dust puff-up to the planet-induced meridional gas flows previously identified by Fung & Chiang and others. We thus emphasize the importance of explicit 3D simulations to obtain the vertical distribution of sub-mm-sized grains around gas gaps opened by massive planets. We caution that the gas-gap-opening planet interpretation of well-defined dust rings is only self-consistent with large grains exceeding mm in size.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا