Do you want to publish a course? Click here

Puffed up Edges of Planet-opened Gaps in Protoplanetary Disks. I. hydrodynamic simulations

94   0   0.0 ( 0 )
 Added by Jiaqing Bi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dust gaps and rings appear ubiquitous in bright protoplanetary disks. Disk-planet interaction with dust-trapping at the edges of planet-induced gaps is one plausible explanation. However, the sharpness of some observed dust rings indicate that sub-mm-sized dust grains have settled to a thin layer in some systems. We test whether or not such dust around gas gaps opened by planets can remain settled by performing three-dimensional, dust-plus-gas simulations of protoplanetary disks with an embedded planet. We find planets massive enough to open gas gaps stir small, sub-mm-sized dust grains to high disk elevations at the gap edges, where the dust scale-height can reach ~70% of the gas scale-height. We attribute this dust puff-up to the planet-induced meridional gas flows previously identified by Fung & Chiang and others. We thus emphasize the importance of explicit 3D simulations to obtain the vertical distribution of sub-mm-sized grains around gas gaps opened by massive planets. We caution that the gas-gap-opening planet interpretation of well-defined dust rings is only self-consistent with large grains exceeding mm in size.



rate research

Read More

71 - Stacy Y. Kim 2018
Young planets with masses approaching Jupiters have tides strong enough to clear gaps around their orbits in the protostellar disk. Gas flow through the gaps regulates the planets further growth and governs the disks evolution. Magnetic forces may drive that flow if the gas is sufficiently ionized to couple to the fields. We compute the ionizing effects of the X-rays from the central young star, using Monte Carlo radiative transfer calculations to find the spectrum of Compton-scattered photons reaching the planets vicinity. The scattered X-rays ionize the gas at rates similar to or greater than the interstellar cosmic ray rate near planets the mass of Saturn and of Jupiter, located at 5 au and at 10 au, in disks with the interstellar mass fraction of sub-micron dust and with the dust depleted a factor 100. Solving a gas-grain recombination reaction network yields charged particle populations whose ability to carry currents is sufficient to partly couple the magnetic fields to the gas around the planet. Most cases can undergo Hall shear instability, and some can launch magnetocentrifugal winds. However the material on the planets orbit has diffusivities so large in all the cases we examine, that magneto-rotational turbulence is prevented and the non-ideal terms govern the magnetic fields evolution. Thus the flow of gas in the gaps opened by the young giant planets depends crucially on the finite conductivity.
375 - Ruobing Dong , Sheng-yuan Liu , 2018
Protoplanets can produce structures in protoplanetary disks via gravitational disk-planet interactions. Once detected, such structures serve as signposts of planet formation. Here we investigate the kinematic signatures in disks produced by multi-Jupiter mass ($M_{rm J}$) planets using 3D hydrodynamics and radiative transfer simulations. Such a planet opens a deep gap, and drives transonic vertical motions inside. Such motions include both a bulk motion of the entire half-disk column, and turbulence on scales comparable to and smaller than the scale height. They significantly broaden molecular lines from the gap, producing double-peaked line profiles at certain locations, and a kinematic velocity dispersion comparable to thermal after azimuthal averaging. The same planet does not drive fast vertical motions outside the gap, except at the inner spiral arms and the disk surface. Searching for line broadening induced by multi-$M_{rm J}$ planets inside gaps requires an angular resolution comparable to the gap width, an assessment of the gap gas temperature to within a factor of 2, and a high sensitivity needed to detect line emission from the gap.
72 - D. Fedele 2017
The paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at $r = 75,$au and $r = 130,$au intervaled by two gaps at at $r = 62,$au and $r = 103,$au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code textsc{dali}. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet ($M_{rm planet} sim 0.8,M_{rm Staturn}$); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet can give origin to the inner gap at $r = 62,$au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet ($M_{rm planet} < 0.1,M_{rm J}$). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity ($alpha < 10^{-4}$). Given the young age of the system (0.5 - 1 Myr), this result implies that the formation of giant planets occurs on a timescale of $lesssim$ 1,Myr.
147 - Sayantan Auddy 2020
Observations of bright protoplanetary disks often show annular gaps in their dust emission. One interpretation of these gaps is disk-planet interaction. If so, fitting models of planetary gaps to observed protoplanetary disk gaps can reveal the presence of hidden planets. However, future surveys are expected to produce an ever-increasing number of protoplanetary disks with gaps. In this case, performing a customized fitting for each target becomes impractical owing to the complexity of disk-planet interaction. To this end, we introduce DPNNet (Disk Planet Neural Network), an efficient model of planetary gaps by exploiting the power of machine learning. We train a deep neural network with a large number of dusty disk-planet hydrodynamic simulations across a range of planet masses, disk temperatures, disk viscosities, disk surface density profiles, particle Stokes numbers, and dust abundances. The network can then be deployed to extract the planet mass for a given gap morphology. In this work, first in a series, we focus on the basic concepts of our machine learning framework. We demonstrate its utility by applying it to the dust gaps observed in the protoplanetary disk around HL Tau at $10$ au, $30$ au, and $80$ au. Our network predict planet masses of $80 , M_{rm Earth}$, $63 , M_{rm Earth}$, and $70 , M_{rm Earth}$, respectively, which are comparable to other studies based on specialized simulations. We discuss the key advantages of our DPNNet in its flexibility to incorporate new physics, any number of parameters and predictions, and its potential to ultimately replace hydrodynamical simulations for disk observers and modelers.
Successful exoplanet surveys in the last decade have revealed that planets are ubiquitous throughout the Milky Way, and show a large diversity in mass, location and composition. At the same time, new facilities such as the Atacama Large Millimeter/submillimeter Array (ALMA) and optical/infrared facilities including Gemini/GPI have provided us with sharper images than ever before of protoplanetary disks around young stars, the birth cradles of planets. The high spatial resolution has revealed astonishing structures in disks, such as rings, gaps, asymmetries and spiral arms, and the enormous jump in sensitivity has provided the tools for both large, statistically relevant surveys and deep, sensitive molecular line studies. These observations have revolutionized our view of planet formation, disk formation and disk evolution, bringing model simulations and observations closer to the same level of detail, with many contributions from Canadian researchers on theoretical, observational and technological sides. The new results have inevitably led to a range of new questions, which require next generation instruments such as the Next Generation Very Large Array (ngVLA) and large scale optical infrared facilities. In this white paper we will discuss the current transformation in our understanding of planet formation and the next steps and challenges in connecting theory with exoplanet demographics and protoplanetary disk observations for Canadian research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا