No Arabic abstract
The faster-is-slower (FIS) effect was first predicted by computer simulations of the egress of pedestrians through a narrow exit [Helbing D, Farkas I J, Vicsek T, Nature 407:487-490 (2000)]. FIS refers to the finding that, under certain conditions, an excess of the individuals vigor in the attempt to exit causes a decrease in the flow rate. In general, this effect is identified by the appearance of a minimum when plotting the total evacuation time of a crowd as a function of the pedestrian desired velocity. Here, we experimentally show that the FIS effect indeed occurs in three different systems of discrete particles flowing through a constriction: (a) humans evacuating a room, (b) a herd of sheep entering a barn and (c) grains flowing out a 2D hopper over a vibrated incline. This finding suggests that FIS is a universal phenomenon for active matter passing through a narrowing.
In this paper we study research trends in condensed matter physics. Trends are analyzed by means of the the number of publications in the different sub-fields as function of the years. We found that many research topics have a similar behavior with an initial fast growth and a next slower exponential decay. We derived a simple model to describe this behavior and built up some predictions for future trends.
In recent years, several approaches for modelling pedestrian dynamics have been proposed and applied e.g. for design of egress routes. However, so far not much attention has been paid to their quantitative validation. This unsatisfactory situation belongs amongst others on the uncertain and contradictory experimental data base. The fundamental diagram, i.e. the density-dependence of the flow or velocity, is probably the most important relation as it connects the basic parameter to describe the dynamic of crowds. But specifications in different handbooks as well as experimental measurements differ considerably. The same is true for the bottleneck flow. After a comprehensive review of the experimental data base we give an survey of a research project, including experiments with up to 250 persons performed under well controlled laboratory conditions. The trajectories of each person are measured in high precision to analyze the fundamental diagram and the flow through bottlenecks. The trajectories allow to study how the way of measurement influences the resulting relations. Surprisingly we found large deviation amongst the methods. These may be responsible for the deviation in the literature mentioned above. The results are of particular importance for the comparison of experimental data gained in different contexts and for the validation of models.
Pinned solitons are a special class of nonlinear solutions created by a supersonically moving object in a fluid. They move with the same velocity as the moving object and thereby remain pinned to the object. A well known hydrodynamical phenomenon, they have been shown to exist in numerical simulation studies but to date have not been observed experimentally in a plasma. In this paper we report the first experimental excitation of pinned solitons in a dusty (complex) plasma flowing over a charged obstacle. The experiments are performed in a {Pi} shaped Dusty Plasma Experimental (DPEx) device in which a dusty plasma is created in the background of a DC glow discharge Ar plasma using micron sized kaolin dust particles. A biased copper wire creates a potential structure that acts as a stationary charged object over which the dust fluid is made to flow at a highly supersonic speed. Under appropriate conditions nonlinear stationary structures are observed in the laboratory frame that correspond to pinned structures moving with the speed of the obstacle in the frame of the moving fluid. A systematic study is made of the propagation characteristics of these solitons by carefully tuning the flow velocity of the dust fluid by changing the height of the potential structure. It is found that the nature of the pinned solitons changes from a single humped one to a multi-humped one and their amplitudes increase with an increase of the flow velocity of the dust fluid. The experimental findings are then qualitatively compared with the numerical solutions of a model forced Korteweg de Vries (fKdV) equation.
We show that any number of parties can coherently exchange any one pure quantum state for another, without communication, given prior shared entanglement. Two applications of this fact to the study of multi-prover quantum interactive proof systems are given. First, we prove that there exists a one-round two-prover quantum interactive proof system for which no finite amount of shared entanglement allows the provers to implement an optimal strategy. More specifically, for every fixed input string, there exists a sequence of strategies for the provers, with each strategy requiring more entanglement than the last, for which the probability for the provers to convince the verifier to accept approaches 1. It is not possible, however, for the provers to convince the verifier to accept with certainty with a finite amount of shared entanglement. The second application is a simple proof that multi-prover quantum interactive proofs can be transformed to have near-perfect completeness by the addition of one round of communication.
We consider the system of particles with equal charges and nearest neighbour Coulomb interaction on the interval. We study local properties of this system, in particular the distribution of distances between neighbouring charges. For zero temperature case there is sufficiently complete picture and we give a short review. For Gibbs distribution the situation is more difficult and we present two related results.