Do you want to publish a course? Click here

Transport in thin polarized Fermi-liquid films

115   0   0.0 ( 0 )
 Added by Michael Miller
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate expressions for the state-dependent quasiparticle lifetime, the thermal conductivity $kappa$, the shear viscosity $eta$, and discuss the spin diffusion coefficient $D$ for Fermi-liquid films in two dimensions. The expressions are valid for low temperatures and arbitrary polarization. The low-temperature expressions for the transport coefficients are essentially exact. We find that $kappa^{-1} sim T ln{T}$, and $eta^{-1} sim T^{2}$ for arbitrary polarizations $0 le {mathcal{P}} le 1$. We note that the shear viscosity requires a unique analysis. We utilize previously determined values for the density and polarization dependent Landau parameters to calculate the transition probabilities in the lowest order $ell = 0$ approximation, and thus we obtain predictions for the density, temperature and polarization dependence of the thermal conductivity, shear viscosity, and spin diffusion coefficient for thin he3 films. Results are shown for second layer he3 films on graphite, and thin he3-he4 superfluid mixtures. The density dependence is discussed in detail. For $kappa$ and $eta$ we find roughly an order of magnitude increase in magnitude from zero to full polarization. For $D$ a simialr large increase is predicted from zero polarization to the polarization where $D$ is a maximum ($sim 0.74$). We discuss the applicability of he3 thin films to the question of the existence of a universal lower bound for the ratio of the shear viscosity to the entropy density.



rate research

Read More

We examine in detail the method introduced by Sanchez-Castro, Bedell, and Wiegers (SBW) to solve Landaus linearized kinetic equation, and compare it with the well-known standard method introduced by Abrikosov and Khalatnikov (AK). The SBW approach, hardly known, differs from AK in the way that moments are taken with respect to the angular functions of the Fourier transformed kinetic equation. We compare the SBW and AK solutions for zero-sound and first-sound propagation speeds and attenuation both analytically in the zero and full polarization limits, and numerically at arbitrary polarization using Landau parameters appropriate for thin $^{3}$He films. We find that the lesser known method not only yields results in close agreement with the standard method, but in most cases does so with far less analytic and computational
53 - J. Schaefer 2005
The spin-selective electron reflection at a ferromagnetic-paramagnetic interface is investigated using Fe films on a W(110) substrate. Angle-resolved photoemission of the majority and minority Fermi surfaces of the Fe film is used to probe standing wave formation. Intense quantum well states resulting from interfacial reflection are observed exclusively for majority states. Such high spin polarization is explained by the Fermi surface topology of the connecting substrate, and we argue that Fe/W is a particularly suitable interface for that purpose.
We have investigated the magnetic and magnetotransport properties of Ba$_2$FeMoO$_6$ thin films produced by pulsed laser deposition from optimized bulk material. The films are comprised of grains of crystalline Ba$_2$FeMoO$_6$ with a disordered grain boundary region that lowers the net saturation magnetization of the film and prevents full magnetic alignment below a Curie temperature $T_C$$sim$305 K. Magnetotransport measurements point to the Ba$_2$FeMoO$_6$ grains retaining the high spin polarization of a half-metal up to $T_C$, while the grain boundaries greatly reduce the spin polarization of the intergrain electrical current due to spin-flip scattering. Our results show that a strong spin polarization of the electronic charge carriers is present even in Ba$_2$FeMoO$_6$ films that do not show the ideal bulk magnetic character.
We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.
Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and in ultra-thin form as a wide-bandgap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts on thin- and ultra-thin films grown via molecular beam epitaxy to ultra-high vacuum environments. Here we demonstrate air-stable Na3Bi thin films passivated with magnesium difluoride (MgF2) or silicon (Si) capping layers. Electrical measurements show that deposition of MgF2 or Si has minimal impact on the transport properties of Na3Bi whilst in ultra-high vacuum. Importantly, the MgF2-passivated Na3Bi films are air-stable and remain metallic for over 100 hours after exposure to air, as compared to near instantaneous degradation when they are unpassivated. Air stability enables transfer of films to a conventional high-magnetic field cryostat, enabling quantum transport measurements which verify that the Dirac semimetal character of Na3Bi films is retained after air exposure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا