Do you want to publish a course? Click here

Dark state cooling of a trapped ion using microwave coupling

309   0   0.0 ( 0 )
 Added by Yong Lu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new dark-state cooling method of trapped ion systems in the Lamb-Dicke limit. With application of microwave dressing the ion, we can obtain two electromagnetically induced transparency structures. The heating effects caused by the carrier and the blue sideband transition vanish due to the EIT effects and the final mean phonon numbers can be much less than the recoil limit. Our scheme is robust to fluctuations of microwave power and laser intensities which provides a broad cooling bandwidth to cool motional modes of a linear ion chain. Moreover, it is more suitable to cool four-level ions on a large-scale ion chip.



rate research

Read More

We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the n=0 and n=1 Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.
Trapped ion in the Lamb-Dicke regime with the Lamb-Dicke parameter $etall1$ can be cooled down to its motional ground state using sideband cooling. Standard sideband cooling works in the weak sideband coupling limit, where the sideband coupling strength is small compared to the natural linewidth $gamma$ of the internal excited state, with a cooling rate much less than $gamma$. Here we consider cooling schemes in the strong sideband coupling regime, where the sideband coupling strength is comparable or even greater than $gamma$. We derive analytic expressions for the cooling rate and the average occupation of the motional steady state in this regime, based on which we show that one can reach a cooling rate which is proportional to $gamma$, while at the same time the steady state occupation increases by a correction term proportional to $eta^{2}$ compared to the weak sideband coupling limit. We demonstrate with numerical simulations that our analytic expressions faithfully recover the exact dynamics in the strong sideband coupling regime.
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405] without any free parameters, validating the rate equation model for cavity cooling.
The availability of a universal quantum computer will have fundamental impact on a vast number of research fields and society as a whole. An increasingly large scientific and industrial community is working towards the realization of such a device. An arbitrarily large quantum computer is best constructed using a modular approach. We present a blueprint for a trapped-ion based scalable quantum computer module which makes it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques and they are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength-radiation based quantum gate technology. To scale this microwave quantum computer architecture to an arbitrary size we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high-error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With only minor adjustments the proposed modules are also suitable for alternative trapped-ion quantum computer architectures, such as schemes using photonic interconnects.
160 - T. Feldker , H. Furst , H. Hirzler 2019
Great advances in precision quantum measurement have been achieved with trapped ions and atomic gases at the lowest possible temperatures. These successes have inspired ideas to merge the two systems. In this way one can study the unique properties of ionic impurities inside a quantum fluid or explore buffer gas cooling of the trapped ion quantum computer. Remarkably, in spite of its importance, experiments with atom-ion mixtures remained firmly confined to the classical collision regime. We report a collision energy of 1.15(0.23) times the $s$-wave energy (or 9.9(2.0)~$mu$K) for a trapped ytterbium ion in an ultracold lithium gas. We observed a deviation from classical Langevin theory by studying the spin-exchange dynamics, indicating quantum behavior in the atom-ion collisions. Our results open up numerous opportunities, such as the exploration of atom-ion Feshbach resonances, in analogy to neutral systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا