Do you want to publish a course? Click here

Ground-state cooling of a trapped ion using long-wavelength radiation

225   0   0.0 ( 0 )
 Added by Sebastian Weidt
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the n=0 and n=1 Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.



rate research

Read More

403 - R. Lechner , C. Maier , C. Hempel 2016
Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.
124 - K. Lake , S. Weidt , J. Randall 2014
Applying a magnetic field gradient to a trapped ion allows long-wavelength microwave radiation to produce a mechanical force on the ions motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb{171}~ion, and use it to produce entanglement between the spin and motional state, an essential step towards using such a field gradient to implement multi-qubit operations.
We propose a new dark-state cooling method of trapped ion systems in the Lamb-Dicke limit. With application of microwave dressing the ion, we can obtain two electromagnetically induced transparency structures. The heating effects caused by the carrier and the blue sideband transition vanish due to the EIT effects and the final mean phonon numbers can be much less than the recoil limit. Our scheme is robust to fluctuations of microwave power and laser intensities which provides a broad cooling bandwidth to cool motional modes of a linear ion chain. Moreover, it is more suitable to cool four-level ions on a large-scale ion chip.
101 - Mu Qiao , Ye Wang , Zhengyang Cai 2020
We theoretically and experimentally investigate double electromagnetically induced transparency (double-EIT) cooling of two-dimensional ion crystals confined in a Paul trap. The double-EIT ground-state cooling is observed for Yb ions with clock state, for which EIT cooling has not been realized like many other ions with a simple $Lambda$-scheme. A cooling rate of $dot{bar n}=34~(pm1.8)~rm{ms}^{-1}$ and a cooling limit of $bar n=0.06~(pm 0.059)$ are observed for a single ion. The measured cooling rate and limit are consistent with theoretical predictions. We apply double-EIT cooling to the transverse modes of two-dimensional (2D) crystals with up to 12 ions. In our 2D crystals, the micromotion and the transverse mode directions are perpendicular, which makes them decoupled. Therefore, the cooling on transverse modes is not disturbed by micromotion, which is confirmed in our experiment. For the center of mass mode of a 12 ions crystal, we observe a cooling rate and a cooling limit that are consistent with those of a single ion, including heating rates proportional to the number of ions. This method can be extended to other hyperfine qubits, and near ground-state cooling of stationary 2D crystals with large numbers of ions may advance the field of quantum information sciences.
160 - T. Feldker , H. Furst , H. Hirzler 2019
Great advances in precision quantum measurement have been achieved with trapped ions and atomic gases at the lowest possible temperatures. These successes have inspired ideas to merge the two systems. In this way one can study the unique properties of ionic impurities inside a quantum fluid or explore buffer gas cooling of the trapped ion quantum computer. Remarkably, in spite of its importance, experiments with atom-ion mixtures remained firmly confined to the classical collision regime. We report a collision energy of 1.15(0.23) times the $s$-wave energy (or 9.9(2.0)~$mu$K) for a trapped ytterbium ion in an ultracold lithium gas. We observed a deviation from classical Langevin theory by studying the spin-exchange dynamics, indicating quantum behavior in the atom-ion collisions. Our results open up numerous opportunities, such as the exploration of atom-ion Feshbach resonances, in analogy to neutral systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا