Do you want to publish a course? Click here

Normal-state nodal electronic structure in underdoped high-Tc copper oxides

157   0   0.0 ( 0 )
 Added by Suchitra Sebastian
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

An outstanding problem in the field of high-transition-temperature (high Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations is effectively accessed by the use of applied magnetic fields sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterised by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6+x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the superconducting gap minima (or nodes), and further point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.



rate research

Read More

The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of intralayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase.
The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.
It has recently been proposed that the Fermi surface of underdoped high Tc copper oxide materials within the charge-ordered regime consists of a diamond-shaped electron pocket constructed from arcs connected at vertices. We show here that on modeling the in-plane magnetotransport of such a Fermi surface using the Shockley-Chambers tube integral approach and a uniform scattering time, several key features of the normal state in-plane transport of the underdoped copper oxide systems can be understood. These include the sign reversal in the Hall coefficient, the positive magnetoresistance and magnetic quantum oscillations in the Hall coefficient.
We report the occurrence of superconductivity, with maximum Tc = 40 K, in superlattices (SLs) based on two insulating oxides, namely CaCuO2 and SrTiO3. In these (CaCuO2)n/(SrTiO3)m SLs, the CuO2 planes belong only to CaCuO2 block, which is an antiferromagnetic insulator. Superconductivity, confined within few unit cells at the CaCuO2/SrTiO3 interface, shows up only when the SLs are grown in a highly oxidizing atmosphere, because of extra oxygen ions entering at the interfaces. Evidence is reported that the hole doping of the CuO2 planes is obtained by charge transfer from the interface layers, which act as charge reservoir.
A great variety of novel phenomena occur when two-dimensional materials, such as graphene or transition metal dichalcogenides, are assembled into bilayers with a twist between individual layers. As a new application of this paradigm, we consider structures composed of two monolayer-thin $d$-wave superconductors with a twist angle $theta$ that can be realized by mechanically exfoliating van der Waals-bonded high-$T_c$ copper oxide materials, such as Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. On the basis of symmetry arguments and detailed microscopic modelling, we predict that for a range of twist angles in the vicinity of $45^{rm o}$, such bilayers form a robust, fully gapped topological phase with spontaneously broken time-reversal symmetry and protected chiral Majorana edge modes. When $thetaapprox 45^{rm o}$, the topological phase sets in at temperatures close to the bulk $T_csimeq 90$ K, thus furnishing a long sought realization of a true high-temperature topological superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا