Do you want to publish a course? Click here

High Tc superconductivity in superlattices of insulating oxides

125   0   0.0 ( 0 )
 Added by Daniele Di Castro
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the occurrence of superconductivity, with maximum Tc = 40 K, in superlattices (SLs) based on two insulating oxides, namely CaCuO2 and SrTiO3. In these (CaCuO2)n/(SrTiO3)m SLs, the CuO2 planes belong only to CaCuO2 block, which is an antiferromagnetic insulator. Superconductivity, confined within few unit cells at the CaCuO2/SrTiO3 interface, shows up only when the SLs are grown in a highly oxidizing atmosphere, because of extra oxygen ions entering at the interfaces. Evidence is reported that the hole doping of the CuO2 planes is obtained by charge transfer from the interface layers, which act as charge reservoir.



rate research

Read More

At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low Tc. We report the occurrence of high Tc superconductivity in the bilayer CaCuO2/SrTiO3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO2/SrTiO3 interface must be realized between the Ca plane of CaCuO2 and the TiO2 plane of SrTiO3. Only in this case extra oxygen ions can be incorporated in the interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO2 planes. A detailed hole doping spatial profile has been obtained by STEM/EELS at the O K-edge, clearly showing that the (super)conductivity is confined to about 1-2 CaCuO2 unit cells close to the interface with SrTiO3. The results obtained for the CaCuO2/SrTiO3 interface can be extended to multilayered high Tc cuprates, contributing to explain the dependence of Tc on the number of CuO2 planes in these systems.
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression $k_BT_c0 = e^2 Lambda / ellzeta$; $ell$ is the spacing between interacting charges within the layers, zeta is the distance between interacting layers and Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.
Up to now, there have been two material families, the cuprates and the iron-based compounds with high-temperature superconductivity (HTSC). An essential open question is whether the two classes of materials share the same essential physics. In both, superconductivity (SC) emerges when an antiferromagnetical (AFM) ordered phase is suppressed. However, in cuprates, the repulsive interaction among the electrons is so strong that the parent compounds are Mott insulators. By contrast, all iron-based parents are metallic. One perspective is that the iron-based parents are weakly correlated and that the AFM arises from a strong nesting of the Fermi surfaces. An alternative view is that the electronic correlations in the parents are still sufficiently strong to place the system close to the boundary between itinerancy and electronic localization. A key strategy to differentiate theses views is to explore whether the iron-based system can be tuned into a Mott insulator. Here we identify an insulating AFM in (Tl,K)FexSe2 by introducing Fe-vacancies and creating superconductivity in the Fe-planar. With the increasing Fe-content, the AFM order is reduced. When the magnetism is eliminated, a superconducting phase with Tc as high as 31K (and a Tc onset as high as 40K) is induced. Our findings indicate that the correlation effect plays a crucial role in the iron-based superconductors. (Tl,K)FexSe2, therefore, represents the first Fe-based high temperature superconductor near an insulating AFM.
Introducing the generalized, non-extensive statistics proposed by Tsallis[1988], into the standard s-wave pairing BCS theory of superconductivity in 2D yields a reasonable description of many of the main properties of high temperature superconductors, provided some allowance is made for non-phonon mediated interactions.
An outstanding problem in the field of high-transition-temperature (high Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations is effectively accessed by the use of applied magnetic fields sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterised by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6+x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the superconducting gap minima (or nodes), and further point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا