Do you want to publish a course? Click here

Targeting Ultimate Accuracy: Face Recognition via Deep Embedding

146   0   0.0 ( 0 )
 Added by Jingtuo Liu
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Face Recognition has been studied for many decades. As opposed to traditional hand-crafted features such as LBP and HOG, much more sophisticated features can be learned automatically by deep learning methods in a data-driven way. In this paper, we propose a two-stage approach that combines a multi-patch deep CNN and deep metric learning, which extracts low dimensional but very discriminative features for face verification and recognition. Experiments show that this method outperforms other state-of-the-art methods on LFW dataset, achieving 99.77% pair-wise verification accuracy and significantly better accuracy under other two more practical protocols. This paper also discusses the importance of data size and the number of patches, showing a clear path to practical high-performance face recognition systems in real world.



rate research

Read More

This paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. However, few existing algorithms can effectively achieve this criterion. To this end, we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features. Geometrically, A-Softmax loss can be viewed as imposing discriminative constraints on a hypersphere manifold, which intrinsically matches the prior that faces also lie on a manifold. Moreover, the size of angular margin can be quantitatively adjusted by a parameter $m$. We further derive specific $m$ to approximate the ideal feature criterion. Extensive analysis and experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace Challenge show the superiority of A-Softmax loss in FR tasks. The code has also been made publicly available.
Existing classification-based face recognition methods have achieved remarkable progress, introducing large margin into hypersphere manifold to learn discriminative facial representations. However, the feature distribution is ignored. Poor feature distribution will wipe out the performance improvement brought about by margin scheme. Recent studies focus on the unbalanced inter-class distribution and form a equidistributed feature representations by penalizing the angle between identity and its nearest neighbor. But the problem is more than that, we also found the anisotropy of intra-class distribution. In this paper, we propose the `gradient-enhancing term that concentrates on the distribution characteristics within the class. This method, named IntraLoss, explicitly performs gradient enhancement in the anisotropic region so that the intra-class distribution continues to shrink, resulting in isotropic and more compact intra-class distribution and further margin between identities. The experimental results on LFW, YTF and CFP-FP show that our outperforms state-of-the-art methods by gradient enhancement, demonstrating the superiority of our method. In addition, our method has intuitive geometric interpretation and can be easily combined with existing methods to solve the previously ignored problems.
Researches using margin based comparison loss demonstrate the effectiveness of penalizing the distance between face feature and their corresponding class centers. Despite their popularity and excellent performance, they do not explicitly encourage the generic embedding learning for an open set recognition problem. In this paper, we analyse margin based softmax loss in probability view. With this perspective, we propose two general principles: 1) monotonic decreasing and 2) margin probability penalty, for designing new margin loss functions. Unlike methods optimized with single comparison metric, we provide a new perspective to treat open set face recognition as a problem of information transmission. And the generalization capability for face embedding is gained with more clean information. An auto-encoder architecture called Linear-Auto-TS-Encoder(LATSE) is proposed to corroborate this finding. Extensive experiments on several benchmarks demonstrate that LATSE help face embedding to gain more generalization capability and it boosted the single model performance with open training dataset to more than $99%$ on MegaFace test.
This paper proposes a technique for training a neural network by minimizing a surrogate loss that approximates the target evaluation metric, which may be non-differentiable. The surrogate is learned via a deep embedding where the Euclidean distance between the prediction and the ground truth corresponds to the value of the evaluation metric. The effectiveness of the proposed technique is demonstrated in a post-tuning setup, where a trained model is tuned using the learned surrogate. Without a significant computational overhead and any bells and whistles, improvements are demonstrated on challenging and practical tasks of scene-text recognition and detection. In the recognition task, the model is tuned using a surrogate approximating the edit distance metric and achieves up to $39%$ relative improvement in the total edit distance. In the detection task, the surrogate approximates the intersection over union metric for rotated bounding boxes and yields up to $4.25%$ relative improvement in the $F_{1}$ score.
Unsupervised domain adaptation has been widely adopted to generalize models for unlabeled data in a target domain, given labeled data in a source domain, whose data distributions differ from the target domain. However, existing works are inapplicable to face recognition under privacy constraints because they require sharing sensitive face images between two domains. To address this problem, we propose a novel unsupervised federated face recognition approach (FedFR). FedFR improves the performance in the target domain by iteratively aggregating knowledge from the source domain through federated learning. It protects data privacy by transferring models instead of raw data between domains. Besides, we propose a new domain constraint loss (DCL) to regularize source domain training. DCL suppresses the data volume dominance of the source domain. We also enhance a hierarchical clustering algorithm to predict pseudo labels for the unlabeled target domain accurately. To this end, FedFR forms an end-to-end training pipeline: (1) pre-train in the source domain; (2) predict pseudo labels by clustering in the target domain; (3) conduct domain-constrained federated learning across two domains. Extensive experiments and analysis on two newly constructed benchmarks demonstrate the effectiveness of FedFR. It outperforms the baseline and classic methods in the target domain by over 4% on the more realistic benchmark. We believe that FedFR will shed light on applying federated learning to more computer vision tasks under privacy constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا