Do you want to publish a course? Click here

S-process enrichment in the planetary nebula NGC 3918. Results from deep echelle spectrophotometry

144   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918. We find that Kr is strongly enriched in NGC 3918 and that Se is less enriched than Kr, in agreement with the results of previous papers and with predicted s-process nucleosynthesis. We also find that Xe is not as enriched by the s-process in NGC 3918 as is Kr and, therefore, that neutron exposure is typical of modestly sub-solar metallicity AGB stars. A clear correlation is found when representing [Kr/O] vs. log(C/O) for NGC 3918 and other objects with detection of multiple ions of Kr in optical data, confirming that carbon is brought to the surface of AGB stars along with s-processed material during third dredge-up episodes, as predicted by nucleosynthesis models. We also detect numerous refractory element lines (Ca, K, Cr, Mn, Fe, Co, Ni, and Cu). We compute physical conditions from a large number of diagnostics. Thanks to the high ionization of NGC 3918 we detect a large number of recombination lines of multiple ionization stages of C, N, O and Ne. The abundances obtained for these elements by using recently-determined state-of-the-art ICF schemes or simply adding ionic abundances are in very good agreement, demonstrating the quality of the recent ICF scheme for high ionization planetary nebulae.



rate research

Read More

We present deep, high-resolution (R~40000) UVES at VLT spectrophotometric data of the planetary nebula NGC 3918. This is one of the deepest spectra ever taken of a planetary nebula. We have identified and measured more than 700 emission lines and, in particular, we have detected very faint lines of several neutron-capture elements (s-process elements: Kr, Xe and Rb) that enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up.
The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918.
237 - B. Ercolano 2002
The three-dimensional Monte Carlo photoionization code Mocassin has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried. The effects of the interaction of the diffuse fields coming from two adjacent regions of different densities were investigated. These are found to be non-negligible, even for the relatively uncomplicated case of a biconical geometry. We found that the ionization structure of low ionization species near the boundaries is particularly affected. It is found that all three models provided acceptable matches to the integrated nebular optical and ultraviolet spectrum. Large discrepancies were found between all of the model predictions of infrared fine-structure line fluxes and ISO SWS measurements. This was found to be largely due to an offset of ~14 arcsec from the centre of the nebula that affected all of the ISO observations of NGC 3918. For each model, we also produced projected emission-line maps and position-velocity diagrams from synthetic long-slit spectra, which could be compared to recent HST images and ground-based long-slit echelle spectra. This comparison showed that spindle-like model B provided the best match to the observations. We have therefore shown that although the integrated emission line spectrum of NGC 3918 can be reproduced by all three of the three-dimensional models investigated in this work, the capability of creating projected emission-line maps and position-velocity diagrams from synthetic long-slit spectra was crucial in allowing us to constrain the structure of this object.
We investigate the enrichment in elements produced by the slow neutron-capture process ($s$-process) in the globular clusters M4 (NGC 6121) and M22 (NGC 6656). Stars in M4 have homogeneous abundances of Fe and neutron-capture elements, but the entire cluster is enhanced in $s$-process elements (Sr, Y, Ba, Pb) relative to other clusters with a similar metallicity. In M22, two stellar groups exhibit different abundances of Fe and $s$-process elements. By subtracting the mean abundances of $s$-poor from $s$-rich stars, we derive $s$-process residuals or empirical $s$-process distributions for M4 and M22. We find that the $s$-process distribution in M22 is more weighted toward the heavy $s$-peak (Ba, La, Ce) and Pb than M4, which has been enriched mostly with light $s$-peak elements (Sr, Y, Zr). We construct simple chemical evolution models using yields from massive star models that include rotation, which dramatically increases $s$-process production at low metallicity. We show that our massive star models with rotation rates of up to 50% of the critical (break-up) velocity and changes to the preferred $^{17}$O($alpha$,$gamma$)$^{21}$Ne rate produce insufficient heavy $s$-elements and Pb to match the empirical distributions. For models that incorporate AGB yields, we find that intermediate-mass yields (with a $^{22}$Ne neutron source) alone do not reproduce the light-to-heavy $s$-element ratios for M4 and M22, and that a small contribution from models with a $^{13}$C pocket is required. With our assumption that $^{13}$C pockets form for initial masses below a transition range between 3.0 and 3.5 M$_odot$, we match the light-to-heavy s-element ratio in the s-process residual of M22 and predict a minimum enrichment timescale of between 240 and 360 Myr. Our predicted value is consistent with the 300 Myr upper limit age difference between the two groups derived from isochrone fitting.
A significant fraction of all metal-poor stars are carbon-rich. Most of these carbon-enhanced metal-poor (CEMP) stars also show enhancement in elements produced mainly by the s-process (CEMP-s stars) and evidence suggests that the origin of these non-standard abundances can be traced to mass transfer from a binary asymptotic giant branch (AGB) companion. Thus, observations of CEMP-s stars are commonly used to infer the nucleosynthesis output of low-metallicity AGB stars. A crucial step in this exercise is understanding what happens to the accreted material after mass transfer ceases. Here we present models of the post-mass-transfer evolution of CEMP-s stars considering the physics of thermohaline mixing and atomic diffusion, including radiative levitation. We find that stars with typical CEMP-s star masses (M ~ 0.85 Msun) have very shallow convective envelopes (Menv < 1e-7 Msun). Hence, the surface abundance variations arising from the competition between gravitational settling and radiative levitation should be orders of magnitude larger than observed (e.g. [C/Fe]<-1 or [C/Fe]>+4). We are therefore unable to reproduce the spread in the observed abundances with these models and conclude that some other physical process must largely suppress atomic diffusion in the outer layers of CEMP-s stars. We demonstrate that this could be achieved by some additional (turbulent) mixing process operating at the base of the convective envelope, as found by other authors. Alternatively, mass-loss rates around 1e-13 Msun/yr could also negate most of the abundance variations by eroding the surface layers and forcing the base of the convective envelope to move inwards in mass. Since atomic diffusion cannot have a substantial effect on the surface abundances of CEMP-s stars, the dilution of the accreted material, while variable in degree from one star to the next, is most likely the same for all elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا