Do you want to publish a course? Click here

Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

120   0   0.0 ( 0 )
 Added by Markus Voge
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In March 2012, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN) PTF12csy was found $0.2^circ$ away from the neutrino alert direction, with an error radius of $0.54^circ$. It has a redshift of $z=0.0684$, corresponding to a luminosity distance of about $300 , mathrm{Mpc}$ and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is $2.2 , sigma$ within IceCubes 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: It is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.



rate research

Read More

On February 17 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swifts X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
Realtime analyses are necessary to identify the source of high energy neutrinos. As an observatory with a 4$pi$ steradian field of view and near-100% duty cycle, the IceCube Neutrino Observatory is a unique facility for investigating transients. In 2016, IceCube established a pipeline that uses low-latency data to rapidly respond to astrophysical events that were of interest to the multi-messenger observational community. Here, we describe this pipeline and summarize the results from all of the analyses performed since 2016. We focus not only on those analyses which were performed in response to transients identified using other messengers such as photons and gravitational waves, but also on how this pipeline can be used to constrain populations of astrophysical neutrino transients by following up high-energy neutrino alerts.
We present optical and NIR photometry and spectroscopy of SN 2013L for the first four years post-explosion. SN 2013L was a moderately luminous (M$_{r}$ = -19.0) Type IIn supernova (SN) that showed signs of strong shock interaction with the circumstellar medium (CSM). The CSM interaction was equal to or stronger to SN 1988Z for the first 200 days and is observed at all epochs after explosion. Optical spectra revealed multi-component hydrogen lines appearing by day 33 and persisting and slowly evolving over the next few years. By day 1509 the H$alpha$ emission was still strong and exhibiting multiple peaks, hinting that the CSM was in a disc or torus around the SN. SN 2013L is part of a growing subset of SNe IIn that shows both strong CSM interaction signatures and the underlying broad lines from the SN ejecta photosphere. The presence of a blue H$alpha$ emission bump and a lack of a red peak does not appear to be due to dust obscuration since an identical profile is seen in Pa$beta$. Instead this suggests a high concentration of material on the near-side of the SN or a disc inclination of roughly edge-on and hints that SN 2013L was part of a massive interactive binary system. Narrow H$alpha$ P-Cygni lines that persist through the entirety of the observations measure a progenitor outflow speed of 80--130 km s$^{-1}$, speeds normally associated with extreme red supergiants, yellow hypergiants, or luminous blue variable winds. This progenitor scenario is also consistent with an inferred progenitor mass-loss rate of 0.3 - 8.0 $times$ 10$^{-3}$ M$_{sun}$ yr$^{-1}$.
In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observing strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا