Do you want to publish a course? Click here

The equal load-sharing model of cascade failures in power grids

238   0   0.0 ( 0 )
 Added by Antonio Scala
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into super-grids.



rate research

Read More

The size distributions of power outages are shown to depend on the stress, or the proximity of the load of an electrical grid to complete breakdown. Using the data for the U.S. between 2002-2017, we show that the outage statistics are dependent on the usage levels during different hours of the day and months of the year. At higher load, not only are more failures likely, but the distribution of failure sizes shifts, to favor larger events. At a finer spatial scale, different regions within the U.S. can be shown to respond differently in terms of the outage statistics to variations in the usage (load). The response, in turn, corresponds to the respective bias towards larger or smaller failures in those regions. We provide a simple model, using realistic grid topologies, which can nonetheless demonstrate biases as a function of the applied load, as in the data. Given sufficient data of small scale events, the method can be used to identify vulnerable regions in power grids prior to major blackouts.
183 - S.Arianos , E.Bompard , A.Carbone 2009
Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. Here, using the North American power grid, we identify, quantify, and analyze the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causes of cascading failures relevant for grid design and operation, and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.
We address the problem of maintaining high voltage power transmission networks in security at all time. This requires that power flowing through all lines remain below a certain nominal thermal limit above which lines might melt, break or cause other damages. Current practices include enforcing the deterministic N-1 reliability criterion, namely anticipating exceeding of thermal limit for any eventual single line disconnection (whatever its cause may be) by running a slow, but accurate, physical grid simulator. New conceptual frameworks are calling for a probabilistic risk based security criterion and are in need of new methods to assess the risk. To tackle this difficult assessment, we address in this paper the problem of rapidly ranking higher order contingencies including all pairs of line disconnections, to better prioritize simulations. We present a novel method based on neural networks, which ranks N-1 and N-2 contingencies in decreasing order of presumed severity. We demonstrate on a classical benchmark problem that the residual risk of contingencies decreases dramatically compared to considering solely all N-1 cases, at no additional computational cost. We evaluate that our method scales up to power grids of the size of the French high voltage power grid (over 1000 power lines).
Blackouts in power grids typically result from cascading failures. The key importance of the electric power grid to society encourages further research into sustaining power system reliability and developing new methods to manage the risks of cascading blackouts. Adequate software tools are required to better analyze, understand, and assess the consequences of the cascading failures. This paper presents MATCASC, an open source MATLAB based tool to analyse cascading failures in power grids. Cascading effects due to line overload outages are considered. The applicability of the MATCASC tool is demonstrated by assessing the robustness of IEEE test systems and real-world power grids with respect to cascading failures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا