Do you want to publish a course? Click here

Neutron Stars in Rastall Gravity

170   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate static and spherically symmetric solutions for the Rastall modification of gravity to describe Neutron Stars (NS). The key feature of the Rastall gravity is the non-conservation of the energy-momentum tensor proportionally to the space-time curvature. Using realistic equations of state for the NS interior we place a conservative bound on the non-GR behaviour of the Rastall theory which should be $lesssim 1%$ level. This work presents the more stringent constraints on the deviations of GR caused by the Rastall proposal.



rate research

Read More

In this paper we analyze Abelian-Higgs strings in a phenomenological model that takes quantum effects in curved space-time into account. This model, first introduced by Rastall, cannot be derived from an action principle. We formulate phenomenological equations of motion under the guiding principle of minimal possible deformation of the standard equations. We construct string solutions that asymptote to a flat space-time with a deficit angle by solving the set of coupled non-linear ordinary differential equations numerically. Decreasing the Rastall parameter from its Einstein gravity value we find that the deficit angle of the space-time increases and becomes equal to $2pi$ at some critical value of this parameter that depends on the remaining couplings in the model. For smaller values the resulting solutions are supermassive string solutions possessing a singularity at a finite distance from the string core. Assuming the Higgs boson mass to be on the order of the gauge boson mass we find that also in Rastall gravity this happens only when the symmetry breaking scale is on the order of the Planck mass. We also observe that for specific values of the parameters in the model the energy per unit length becomes proportional to the winding number, i.e. the degree of the map $S^1 rightarrow S^1$. Unlike in the BPS limit in Einstein gravity, this is, however, not connect to an underlying mathematical structure, but rather constitutes a would-be-BPS bound.
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar coupling $Q$ with matter works to change the star radius in comparison to General Relativity, while the maximum allowed mass of neutron stars is hardly modified for both SLy and FPS equations of state. In Brans-Dicke theory with the massive potential $V(phi)=m^2 phi^2/2$, where $m^2$ is a positive constant, we show the difficulty of realizing neutron star solutions with a stable field profile due to the existence of an exponentially growing mode outside the star. As in $f(R)$ gravity with the $R^2$ term, this property is related to the requirement of extra boundary conditions of the field at the surface of star. For the self-coupling potential $V(phi)=lambda phi^4/4$, this problem can be circumvented by the fact that the second derivative $V_{,phi phi}=3lambdaphi^2$ approaches 0 at spatial infinity. In this case, we numerically show the existence of neutron star solutions for both SLy and FPS equations of state and discuss how the mass-radius relation is modified as compared to General Relativity.
We compute families of spherically symmetric neutron-star models in two-derivative scalar-tensor theories of gravity with a massive scalar field. The numerical approach we present allows us to compute the resulting spacetimes out to infinite radius using a relaxation algorithm on a compactified grid. We discuss the structure of the weakly and strongly scalarized branches of neutron-star models thus obtained and their dependence on the linear and quadratic coupling parameters $alpha_0$, $beta_0$ between the scalar and tensor sectors of the theory, as well as the scalar mass $mu$. For highly negative values of $beta_0$, we encounter configurations resembling a gravitational atom, consisting of a highly compact baryon star surrounded by a scalar cloud. A stability analysis based on binding-energ calculations suggests that these configurations are unstable and we expect them to migrate to models with radially decreasing baryon density {it and} scalar field strength.
Deviations from the predictions of general relativity due to energy-momentum squared gravity (EMSG) are expected to become pronounced in the high density cores of neutron stars. We derive the hydrostatic equilibrium equations in EMSG and solve them numerically to obtain the neutron star mass-radius relations for four different realistic equations of state. We use the existing observational measurements of the masses and radii of neutron stars to constrain the free parameter, $alpha ,$ that characterizes the coupling between matter and spacetime in EMSG. We show that $-10^{-38},mathrm{cm^{3}/erg}<alpha <+10^{-37},mathrm{cm^{3}/erg}$. Under this constraint, we discuss what contributions EMSG can provide to the physics of neutron stars, in particular, their relevance to the so called textit{hyperon puzzle} in neutron stars. We also discuss how EMSG alters the dynamics of the early universe from the predictions of the standard cosmological model. We show that EMSG leaves the standard cosmology safely unaltered back to $tsim 10^{-4}$ seconds at which the energy density of the universe is $sim 10^{34},mathrm{erg,cm^{-3}}$.
Gravitational waves emitted from the coalescence of neutron star binaries open a new window to probe matter and fundamental physics in unexplored, extreme regimes. To extract information about the supranuclear matter inside neutron stars and the properties of the compact binary systems, robust theoretical prescriptions are required. We give an overview about general features of the dynamics and the gravitational wave signal during the binary neutron star coalescence. We briefly describe existing analytical and numerical approaches to investigate the highly dynamical, strong-field region during the merger. We review existing waveform approximants and discuss properties and possible advantages and shortcomings of individual waveform models, and their application for real gravitational-wave data analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا