Gravitational waves emitted from the coalescence of neutron star binaries open a new window to probe matter and fundamental physics in unexplored, extreme regimes. To extract information about the supranuclear matter inside neutron stars and the properties of the compact binary systems, robust theoretical prescriptions are required. We give an overview about general features of the dynamics and the gravitational wave signal during the binary neutron star coalescence. We briefly describe existing analytical and numerical approaches to investigate the highly dynamical, strong-field region during the merger. We review existing waveform approximants and discuss properties and possible advantages and shortcomings of individual waveform models, and their application for real gravitational-wave data analysis.
Modified gravitational wave (GW) propagation is a generic phenomenon in modified gravity. It affects the reconstruction of the redshift of coalescing binaries from the luminosity distance measured by GW detectors, and therefore the reconstruction of the actual masses of the component compact stars from the observed (`detector-frame) masses. We show that, thanks to the narrowness of the mass distribution of binary neutron stars, this effect can provide a clear signature of modified gravity, particularly for the redshifts explored by third generation GW detectors such as Einstein Telescope and Cosmic Explorer.
Inspiralling compact binaries as standard sirens will soon become an invaluable tool for cosmology when advanced interferometric gravitational-wave detectors begin their observations in the coming years. However, a degeneracy in the information carried by gravitational waves between the total rest-frame mass $M$ and the redshift $z$ of the source implies that neither can be directly extracted from the signal, but only the combination $M(1+z)$, the redshifted mass. Recent work has shown that for binary neutron star systems, a tidal correction to the gravitational-wave phase in the late-inspiral signal that depends on the rest-frame source mass could be used to break the mass-redshift degeneracy. We propose here to use the signature encoded in the post-merger signal to deduce the redshift to the source. This will allow an accurate extraction of the intrinsic rest-frame mass of the source, in turn permitting the determination of source redshift and luminosity distance solely from gravitational-wave observations. This will herald a new era in precision cosmography and astrophysics. Using numerical simulations of binary neutron star mergers of very slightly different mass, we model gravitational-wave signals at different redshifts and use Bayesian parameter estimation to determine the accuracy with which the redshift can be extracted for a source of known mass. We find that the Einstein Telescope can determine the source redshift to $sim 10$--$20%$ at redshifts of $z<0.04$.
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cmathbf{J}/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
Gravitational waves have been detected from the inspiral of a binary neutron-star, GW170817, which allowed constraints to be placed on the neutron star equation of state. The equation of state can be further constrained if gravitational waves from a post-merger remnant are detected. Post-merger waveforms are currently generated by numerical-relativity simulations, which are computationally expensive. Here we introduce a hierarchical model trained on numerical-relativity simulations, which can generate reliable post-merger spectra in a fraction of a second. Our spectra have mean fitting factors of 0.95, which compares to fitting factors of 0.76 and 0.85 between different numerical-relativity codes that simulate the same physical system. This method is the first step towards generating large template banks of spectra for use in post-merger detection and parameter estimation.
Tim Dietrich
,Tanja Hinderer
,Anuradha Samajdar
.
(2020)
.
"Interpreting Binary Neutron Star Mergers: Describing the Binary Neutron Star Dynamics, Modelling Gravitational Waveforms, and Analyzing Detections"
.
Tim Dietrich
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا