Do you want to publish a course? Click here

Ted Geballe: A Lifetime of Contributions To Superconductivity

415   0   0.0 ( 0 )
 Added by G. R. Stewart
 Publication date 2015
  fields Physics
and research's language is English
 Authors G. R. Stewart




Ask ChatGPT about the research

The editors have dedicated this special issue on superconducting materials to Ted Geballe in honor of his numerous seminal contributions to the field of superconducting materials over more than 60 years, on the year of his 95th birthday. Here, as an executive summary, are just a few highlights of his research in superconductivity, leavened with some anecdotes, and ending with some of Teds general insights and words of wisdom.



rate research

Read More

It was recently suggested that the topology of magic-angle twisted bilayer graphenes (MATBG) flat bands could provide a novel mechanism for superconductivity distinct from both weakly-coupled BCS theory and the $d$-wave phenomenology of the high-$T_c$ cuprates. In this work, we examine this possibility using a density matrix renormalization group (DMRG) study of a model which captures the essential features of MATBGs symmetry and topology. Using large scale cylinder-DMRG calculations to obtain the ground state and its excitations as a function of the electron doping, we find clear evidence for superconductivity driven by the binding of electrons into charge-$2e$ skyrmions. Remarkably, this binding is observed even in the regime where the unscreened Coulomb repulsion is by-far the largest energy scale, demonstrating the robustness of this topological, all-electronic pairing mechanism.
We present detailed electronic structure calculations for CaFe2As2. We investigate in particular the `collapsed tetragonal and orthorhombic regions of the temperature-pressure phase diagram and find properties that distinguish CaFe2As2 from other Fe-pnictide compounds. In contrast to the tetragonal phase of other Fe-pnictides the electronic structure in the `collapsed tetragonal phase of CaFe2As2 is found to be strongly 3D. We discuss the influence of these properties on the formation of superconductivity and in particular we find evidence that both magnetic and lattice interactions may be important to the formation of superconductivity. We also find that the Local Spin Density Approximation is able to accurately predict the ordering moment in the low temperature orthorhombic phase.
102 - Xi-Wen Guan , Feng He 2019
In the 60s Professor Chen Ping Yang with Professor Chen Ning Yang published several seminal papers on the study of Bethes hypothesis for various problems of physics. The works on the lattice gas model, critical behaviour in liquid-gas transition, the one-dimensional (1D) Heisenberg spin chain, and the thermodynamics of 1D delta-function interacting bosons are significantly important and influential in the fields of mathematical physics and statistical mechanics. In particular, the work on the 1D Heisenberg spin chain led to subsequent developments in many problems using Bethes hypothesis. The method which Yang and Yang proposed to treat the thermodynamics of the 1D system of bosons with a delta-function interaction leads to significant applications in a wide range of problems in quantum statistical mechanics. The Yang and Yang thermodynamics has found beautiful experimental verifications in recent years.
During the second world war, Canada made several important contributions to the wartime work of the Manhattan Project. The three main contributions were: establishing a domestic nuclear research laboratory in Montreal to investigate heavy water reactors, creating supply chains to provide uranium oxide, heavy water and polonium to the Manhattan Project, and the direct contributions of several Canadians living the United States. These wartime efforts helped establish a legacy of nuclear research in Canada which has persisted to the present day.
Understanding and mitigating loss channels due to two-level systems (TLS) is one of the main cornerstones in the quest of realizing long photon lifetimes in superconducting quantum circuits. Typically, the TLS to which a circuit couples are modeled as a large bath without any coherence. Here we demonstrate that the coherence of TLS has to be considered to accurately describe the ring-down dynamics of a coaxial quarter-wave resonator with an internal quality factor of $0.5times10^9$ at the single-photon level. The transient analysis reveals effective non-Markovian dynamics of the combined TLS and cavity system, which we can accurately fit by introducing a comprehensive TLS model. The fit returns an average coherence time of around $T_2^*approx0.3,mathrm{mu s}$ for a total of $Napprox10^{9}$ TLS with power-law distributed coupling strengths. Despite the shortly coherent TLS excitations, we observe long-term effects on the cavity decay due to coherent elastic scattering between the resonator field and the TLS. Moreover, this model provides an accurate prediction of the internal quality factors temperature dependence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا