No Arabic abstract
The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, that will complement information obtained by the Gaia astrometry satellite. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Students t-distributions than by normal distributions. Parametrised results are provided, that enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km/s, dependent on instrumental configuration.
The Chinese Space Station Telescope (CSST) spectroscopic survey plans to deliver high-quality low-resolution ($R > 200$) slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag, covering a large survey area (17500 deg$^2$) and a wide wavelength range (255-1000 nm by 3 bands GU, GV, and GI). In this work, we use empirical spectra of the Next Generation Spectral Library to simulate the CSST stellar spectra at $R = 250$, and investigate their capabilities in measuring radial velocities. We find that velocity uncertainties depend strongly on effective temperature, weakly on metallicity for only FGK stars, and hardly on surface gravity. It is possible to deliver stellar radial velocities to a precision of about $3 ,mathrm{km},mathrm{s}^{-1}$ for AFGKM stars, and about $10 ,mathrm{km},mathrm{s}^{-1}$ for OB stars, at signal-to-noise ratio (SNR) of 100. Velocity uncertainties using single GU/GV/GI band spectra are also explored. Given the same SNR, the GU band performs best, the GV band the second best, and then the GI band. The effects of spectral normalization and imperfect template on velocity measurements are investigated and found to be very weak. The uncertainties caused by wavelength calibration are considered and found to be moderate. Given the possible precision of radial velocities, the CSST spectroscopic survey can enable interesting science such as searching for hyper-velocity stars. Limitations of our results are also discussed.
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANOs capability to cover the entire NIR wavelength range (0.95-2.45 micron) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H -magnitudes: for H ~ 5 we obtain an rms scatter of ~ 10 m s-1, while for H ~ 9 the standard deviation increases to ~ 50 - 80 m s-1. The corresponding theoretical error expectations are ~4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm/s measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this precision are summarized here. Beginning with the HARPS spectrograph, technological advances for precision radial velocity measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to produce even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision radial velocity community include distinguishing center of mass Keplerian motion from photospheric velocities, and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. Center of mass velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. Higher precision radial velocity measurements are required to serve as a discovery technique for potentially habitable worlds and to characterize detections from transit missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.
Radial velocity identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near infrared radial velocity techniques. We present our methodology for achieving 58 m/s precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3-meter NASA IRTF. We also demonstrate our ability to recover the known 4 Mjup exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.
For Gaia DR2 (GDR2), 280 million spectra, collected by the RVS instrument on-board Gaia, were processed and median radial velocities were derived for 9.8 million sources brighter than Grvs = 12 mag. This paper describes the validation and properties of the median radial velocities published in GDR2. Quality tests and filters are applied to select, from the 9.8 million radial velocities, those with the quality to be published in GDR2. The accuracy of the selected sample is assessed with respect to ground-based catalogues. Its precision is estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. GDR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550, 6900] K, which passed succesfully the quality tests. The published median radial velocities provide a full sky-coverage and have a completness with respect to the astrometric data of 77.2% (for $G leq 12.5$ mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100s m/s. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around Grvs $sim 9$ mag and reaches about $+500$ m/s at Grvs $= 11.75$ mag. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km/s. The radial velocity precision is function of many parameters, in particular the magnitude and effective temperature. For bright stars, Grvs in [4, 8] mag, the precision is in the range 200-350 m/s, which is about 3 to 5 times more precise than the pre-launch specification of 1 km/s. At the faint end, Grvs = 11.75 mag, the precisions for Teff = 5000 K and 6500 K are respectively 1.4 km/s and 3.7 km/s.