Do you want to publish a course? Click here

Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot

112   0   0.0 ( 0 )
 Added by Dominik Zumb\\\"uhl
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a thermally activated metastability in a GaAs double quantum dot exhibiting real-time charge switching in diamond shaped regions of the charge stability diagram. Accidental charge traps and sensor back action are excluded as the origin of the switching. We present an extension of the canonical double dot theory based on an intrinsic, thermal electron exchange process through the reservoirs, giving excellent agreement with the experiment. The electron spin is randomized by the exchange process, thus facilitating fast, gate-controlled spin initialization. At the same time, this process sets an intrinsic upper limit to the spin relaxation time.



rate research

Read More

140 - Shi-Hua Ouyang , Chi-Hang Lam , 2009
We develop a master equation approach to study the backaction of quantum point contact (QPC) on a double quantum dot (DQD) at zero bias voltage. We reveal why electrons can pass through the zero-bias DQD only when the bias voltage across the QPC exceeds a threshold value determined by the eigenstate energy difference of the DQD. This derived excitation condition agrees well with experiments on QPC-induced inelastic electron tunneling through a DQD [S. Gustavsson et al., Phys. Rev. Lett. 99, 206804(2007)]. Moreover, we propose a new scheme to generate a pure spin current by the QPC in the absence of a charge current.
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwells demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using a feedback scheme. We investigate the electrical work produced by the demon and find a non-Gaussian work distribution. To illustrate the effect of a realistic charge detection scheme, we develop a model taking into account noise as well as a finite delay time, and show that an experimental realization is feasible with present day technology. Depending on the accuracy of the measurement, the system is operated as an implementation of Maxwells demon or a single-electron pump.
The dynamics of charge qubit in a double quantum dot coupled to phonons is investigated theoretically in terms of a perturbation treatment based on a unitary transformation. The dynamical tunneling current is obtained explicitly. The result is compared with the standard perturbation theory at Born-Markov approximation. The decoherence induced by acoustic phonons is analyzed at length. It is shown that the contribution from deformation potential coupling is comparable to that from piezoelectric coupling in small dot size and large tunneling rate case. A possible decoupling mechanism is predicted.
We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots we move the system around charge triple points and transport exactly one electron or hole per cycle. We investigate the pumping as a function of the modulation frequency and amplitude and observe good current quantization up to frequencies of 18 MHz where rectification effects cause the mechanism to break down.
130 - T. Ferrus , A. Rossi , M. Tanner 2009
As semiconductor device dimensions are reduced to the nanometer scale, effects of high defect density surfaces on the transport properties become important to the extent that the metallic character that prevails in large and highly doped structures is lost and the use of quantum dots for charge sensing becomes complex. Here we have investigated the mechanism behind the detection of electron motion inside an electrically isolated double quantum dot that is capacitively coupled to a single electron transistor, both fabricated from highly phosphorous doped silicon wafers. Despite, the absence of a direct charge transfer between the detector and the double dot structure, an efficient detection is obtained. In particular, unusually large Coulomb peak shifts in gate voltage are observed. Results are explained in terms of charge rearrangement and the presence of inelastic cotunneling via states at the periphery of the single electron transistor dot.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا