Do you want to publish a course? Click here

The classical nature of nuclear spin noise near clock transitions of Bi donors in silicon

279   0   0.0 ( 0 )
 Added by Ma Wen-Long
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whether a quantum bath can be approximated as classical noise is a fundamental issue in central spin decoherence and also of practical importance in designing noise-resilient quantum control. Spin qubits based on bismuth donors in silicon have tunable interactions with nuclear spin baths and are first-order insensitive to magnetic noise at so-called clock-transitions (CTs). This system is therefore ideal for studying the quantum/classical nature of nuclear spin baths since the qubit-bath interaction strength determines the back-action on the baths and hence the adequacy of a classical noise model. We develop a Gaussian noise model with noise correlations determined by quantum calculations and compare the classical noise approximation to the full quantum bath theory. We experimentally test our model through dynamical decoupling sequence of up to 128 pulses, finding good agreement with simulations and measuring electron spin coherence times approaching one second - notably using natural silicon. Our theoretical and experimental study demonstrates that the noise from a nuclear spin bath is analogous to classical Gaussian noise if the back-action of the qubit on the bath is small compared to the internal bath dynamics, as is the case close to CTs. However, far from the CTs, the back-action of the central spin on the bath is such that the quantum model is required to accurately model spin decoherence.



rate research

Read More

Despite the importance of isotopically purified samples in current experiments, there have been few corresponding studies of spin qubit decoherence using full quantum bath calculations. Isotopic purification eliminates the well-studied nuclear spin baths which usually dominate decoherence. We model the coherence of electronic spin qubits in silicon near so called Clock Transitions (CT) where experiments have electronic $T_{2e}$ times of seconds. Despite the apparent simplicity of the residual decoherence mechanism, this regime is not well understood: the state mixing which underpins CTs allows also a proliferation of contributions from usually forbidden channels (direct flip-flops with non-resonant spins); in addition, the magnitude and effects of the corresponding Overhauser fields and other detunings is not well quantified. For purely magnetic detunings, we identify a regime, potentially favourable for quantum computing, where forbidden channels are completely suppressed but spins in resonant states are fully released from Overhauser fields and applied magnetic field gradients. We show by a general argument that the enhancement between this regime and the high field limit is $< 8$, regardless of density, while enhancements of order 50 are measured experimentally. We propose that this discrepancy is likely to arise from strains of exclusively non-magnetic origin, underlining the potential of CTs for isolating and probing different types of inhomogeneities. We also identify a set of fields, Dipolar Refocusing Points (DRPs), where the Hahn echo fully refocuses the effect of the dipolar interaction.
The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pulse sequence, an echo decay with a time constant of $1.7pm0.2 rm{mu s}$ is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.
Impurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-domain applications, the spins of group-VI $^{125}$Te$^+$ donors implanted into natural Si at depths of 20 and 300 nm. We examine spin activation yield, relaxation ($T_1$) and coherence times ($T_2$) and show how a zero-field 3.5 GHz `clock transition extends spin coherence times to over 1 ms and narrows the inhomogeneous spin linewidth to 0.6 MHz. We show that surface band-bending can be used to ionise Te to spin-active Te$^+$ state, and that coherence times of near-surface donors are comparable to the bulk. We demonstrate initialization protocols using optical illumination to generate excess Te$^+$. These results show that $^{125}$Te$^+$ is a promising system for silicon-based spin qubits and ensemble quantum memories.
Optically interfaced spins in the solid promise scalable quantum networks. Robust and reliable optical properties have so far been restricted to systems with inversion symmetry. Here, we release this stringent constraint by demonstrating outstanding optical and spin properties of single silicon vacancy centres in silicon carbide. Despite the lack of inversion symmetry, the systems particular wave function symmetry decouples its optical properties from magnetic and electric fields, as well as from local strain. This provides a high-fidelity spin-to-photon interface with exceptionally stable and narrow optical transitions, low inhomogeneous broadening, and a large fraction of resonantly emitted photons. Further, the weak spin-phonon coupling results in electron spin coherence times comparable with nitrogen-vacancy centres in diamond. This allows us to demonstrate coherent hyperfine coupling to single nuclear spins, which can be exploited as qubit memories. Our findings promise quantum network applications using integrated semiconductor-based spin-to-photon interfaces.
Nuclear spins were among the first physical platforms to be considered for quantum information processing, because of their exceptional quantum coherence and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, due to the lack of methods to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted $^{31}$P nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterised using gate set tomography (GST), yielding one-qubit gate fidelities up to 99.93(3)%, two-qubit gate fidelity of 99.21(14)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger-Horne-Zeilinger three-qubit state with 92.5(1.0)% fidelity. Since electron spin qubits in semiconductors can be further coupled to other electrons or physically shuttled across different locations, these results establish a viable route for scalable quantum information processing using nuclear spins.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا