Do you want to publish a course? Click here

Tree-Grass interactions dynamics and Pulse Fires: mathematical and numerical studies

102   0   0.0 ( 0 )
 Added by Yves Dumont YD
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Savannas are dynamical systems where grasses and trees can either dominate or coexist. Fires are known to be central in the functioning of the savanna biome though their characteristics are expected to vary along the rainfall gradients as observed in Sub-Saharan Africa. In this paper, we model the tree-grass dynamics using impulsive differential equations that consider fires as discrete events. This framework allows us to carry out a comprehensive qualitative mathematical analysis that revealed more diverse possible outcomes than the analogous continuous model. We investigated local and global properties of the equilibria and show that various states exist for the physiognomy of vegetation. Though several abrupt shifts between vegetation states appeared determined by fire periodicity, we showed that direct shading of grasses by trees is also an influential process embodied in the model by a competition parameter leading to bifurcations. Relying on a suitable nonstandard finite difference scheme, we carried out numerical simulations in reference to three main climatic zones as observable in Central Africa.



rate research

Read More

Many systems in life sciences have been modeled by reaction-diffusion equations. However, under some circumstances, these biological systems may experience instantaneous and periodic perturbations (e.g. harvest, birth, release, fire events, etc) such that an appropriate formalism is necessary, using, for instance, impulsive reaction-diffusion equations. While several works tackled the issue of traveling waves for monotone reaction-diffusion equations and the computation of spreading speeds, very little has been done in the case of monotone impulsive reaction-diffusion equations. Based on vector-valued recursion equations theory, we aim to present in this paper results that address two main issues of monotone impulsive reaction-diffusion equations. First, they deal with the existence of traveling waves for monotone systems of impulsive reaction-diffusion equations. Second, they allow the computation of spreading speeds for monotone systems of impulsive reaction-diffusion equations. We apply our methodology to a planar system of impulsive reaction-diffusion equations that models tree-grass interactions in fire-prone savannas. Numerical simulations, including numerical approximations of spreading speeds, are finally provided in order to illustrate our theoretical results and support the discussion.
222 - V. Yatat , P. Couteron , J.J. Tewa 2015
Fires and rainfall are major mechanisms that regulate woody and grassy biomasses in savanna ecosystems. Conditions of long-lasting coexistence of trees and grasses have been mainly studied using continuous-time modelling of tree-grass competition. In these frameworks, fire is a time-continuous forcing while the relationship between woody plant size and fire-sensitivity is not systematically considered. In this paper, we propose a new mathematical framework to model tree-grass interaction that takes into account both the discrete nature of fire occurrence and size-dependent fire sensitivity (via two classes of woody plants). We carry out a qualitative analysis that highlights ecological thresholds and bifurcations parameters that shape the dynamics of the savanna-like systems within the main ecological zones. Moreover, through a qualitative analysis, we show that the impulsive modelling of fire occurrences leads to more diverse behaviors and a more realistic array of solutions than the analogous time-continuous fire models. Numerical simulations are provided to illustrate the theoretical results and to support a discussion about the bifurcation parameters and future developments.
136 - Jianping Li , Shouhong Wang 2007
In this article, we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics (GFD) and climate dynamics. The main focus is on 1) the primitive equations (PEs) models and their related mathematical and computational issues, 2) climate variability, predictability and successive bifurcation, and 3) a new dynamical systems theory and its applications to GFD and climate dynamics.
71 - W. Herr 2016
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings.
We study billiard in the plane endowed with symmetric $mathbb{Z}^2$-periodic obstacles of a right-angled polygonal shape. One of our main interests is the dependence of the diffusion rate of the billiard on the shape of the obstacle. We prove, in particular, that when the number of angles of a symmetric connected obstacle grows, the diffusion rate tends to zero, thus answering a question of J.-C. Yoccoz. Our results are based on computation of Lyapunov exponents of the Hodge bundle over hyperelliptic loci in the moduli spaces of quadratic differentials, which represents independent interest. In particular, we compute the exact value of the Lyapunov exponent $lambda^+_1$ for all elliptic loci of quadratic differentials with simple zeroes and poles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا