No Arabic abstract
We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range. We observe strong microlensing signatures in lensed image D, and we use this microlensing to simultaneously constrain both the broad emission and broad absorption line gas. By modeling the lens system over the range of probable lensing galaxy redshifts and using on a new argument based on the wavelength-independence of the broad line lensing magnifications, we determine that there is no significant broad line emission from smaller than ~20 light days. We also perform spectral decomposition to derive the intrinsic broad emission line (BEL) and continuum spectrum, subject to BAL absorption. We also reconstruct the intrinsic BAL absorption profile, whose features allow us to constrain outflow kinematics in the context of a disk-wind model. We find a very sharp, blueshifted onset of absorption of 1,500 km/s in both C IV and N V that may correspond to an inner edge of a disk-winds radial outflow. The lower ionization Si IV and Al III have higher-velocity absorption onsets, consistent with a decreasing ionization parameter with radius in an accelerating outflow. There is evidence of strong absorption in the BEL component which indicates a high covering factor for absorption over two orders of magnitude in outflow radius.
On the basis of 16 years of spectroscopic observations of the four components of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range, we analyze the spectral differences observed in the P Cygni-type line profiles and have used the microlensing effect to derive new clues to the BAL profile formation. We confirm that the spectral differences observed in component D can be attributed to a microlensing effect lasting at least a decade. We show that microlensing magnifies the continuum source in image D, leaving the emission line region essentially unaffected. We interpret the differences seen in the absorption profiles of component D as the result of an emission line superimposed onto a nearly black absorption profile. We also find that the continuum source and a part of the broad emission line region are likely de-magnified in component C, while components A and B are not affected by microlensing. We show that microlensing of the continuum source in component D has a chromatic dependence compatible with the thermal continuum emission of a standard Shakura-Sunyaev accretion disk. Using a simple decomposition method to separate the part of the line profiles affected by microlensing and coming from a compact region from the part unaffected by this effect and coming from a larger region, we disentangle the true absorption line profiles from the true emission line profiles. The extracted emission line profiles appear double-peaked, suggesting that the emission is occulted by a strong absorber, narrower in velocity than the full absorption profile, and emitting little by itself. We propose that the outflow around H1413+117 is constituted by a high-velocity polar flow and a denser, lower velocity disk seen nearly edge-on.
We demonstrate a new technique for determining the physical conditions of the broad line emitting gas in quasars, using near-infrared hydrogen emission lines. Unlike higher ionisation species, hydrogen is an efficient line emitter for a very wide range of photoionisation conditions, and the observed line ratios depend strongly on the density and photoionisation state of the gas present. A locally optimally emitting cloud model of the broad emission line region was compared to measured emission lines of four nearby ($zapprox0.2$) quasars that have optical and NIR spectra of sufficient signal-to-noise to measure their Paschen lines. The model provides a good fit to three of the objects, and a fair fit to the fourth object, a ULIRG. We find that low incident ionising fluxes ($phih<10^{18}$cmsqs), and high gas densities ($ h>10^{12}$cmcu) are required to reproduce the observed hydrogen emission line ratios. This analysis demonstrates that the use of composite spectra in photoionisation modelling is inappropriate; models must be fitted to the individual spectra of quasars.
CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V~16.2. Only ~1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (FeLoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H-alpha in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km/s in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.
Gravitational microlensing is a powerful tool for probing the inner structure of distant quasars. In this context, we have obtained spectropolarimetric observations of the two images of the broad absorption line (BAL) quasar SDSSJ081830.46+060138.0 (J0818+0601) at redshift $z simeq$ 2.35. We first show that J0818+0601 is actually gravitationally lensed, and not a binary quasar. A strong absorption system detected at $z$ = 1.0065$pm$0.0002 is possibly due to the lensing galaxy. Microlensing is observed in one image and it magnifies the emission lines, the continuum, and the BALs differently. By disentangling the part of the spectrum that is microlensed from the part that is not microlensed, we unveil two sources of continuum that must be spatially separated: a compact one, which is microlensed, and an extended one, which is not microlensed and contributes to two thirds of the total continuum emission. J0818+0601 is the second BAL quasar in which an extended source of rest-frame ultraviolet continuum is found. We also find that the images are differently polarized, suggesting that the two continua might be differently polarized. Our analysis provides constraints on the BAL flow. In particular, we find that the outflow is seen with a nonzero onset velocity, and stratified according to ionization.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure, evolution, and basic physical properties of these outflows. We are conducting a BAL monitoring program, which so far includes 163 spectra of 24 luminous quasars, covering time-scales from sim 1 week to 8 years in the quasar rest-frame. We investigate changes in both the CIV {lambda}1550 and SiIV {lambda}1400 BALs, and we report here on some of the results from this program.