No Arabic abstract
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracted balls of a certain color given the past is assumed to be hypergeometric. We prove some central limit theorems in the sense of stable convergence and of almost sure conditional convergence, which are stronger than convergence in distribution. The proven results provide asymptotic confidence intervals for the limit proportion, whose distribution is generally unknown. Moreover, we also consider the case of more urns subjected to some random common factors.
We prove a Central Limit Theorem for the sequence of random compositions of a two-color randomly reinforced urn. As a consequence, we are able to show that the distribution of the urn limit composition has no point masses.
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, forcing their convergence to the same, possibly random, limit. Random walks of this form have been introduced in the context of urn models and in stochastic approximation. We also propose an application to opinion dynamics in a random network evolving via preferential attachment. We study, in particular, random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain conditions, synchronization is faster than convergence.
The approximation of integral type functionals is studied for discrete observations of a continuous It^o semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for $L^2$-Sobolev functions with fractional smoothness. An explicit $L^2$-lower bound shows that already lower order quadrature rules, such as the trapezoidal rule and the classical Riemann estimator, are rate optimal, but only the trapezoidal rule is efficient, achieving the minimal asymptotic variance.
An urn contains balls of d colors. At each time, a ball is drawn and then replaced together with a random number of balls of the same color. Assuming that some colors are dominated by others, we prove central limit theorems. Some statistical applications are discussed.
We propose new generalized multivariate hypergeometric distributions, which extremely resemble the classical multivariate hypergeometric distributions. The proposed distributions are derived based on an urn model approach. In contrast to existing methods, this approach does not involve hypergeometric series.