Do you want to publish a course? Click here

TOPoS: II. On the bimodality of carbon abundance in CEMP stars. Implications on the early chemical evolution of galaxies

129   0   0.0 ( 0 )
 Added by Piercarlo Bonifacio
 Publication date 2015
  fields Physics
and research's language is English
 Authors P. Bonifacio




Ask ChatGPT about the research

In the course of the TOPoS (Turn Off Primordial Stars) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. We here present our analysis of six CEMP stars. Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0<=[Ca/H]< -2.1 and 7.12<=A(C)<=8.65. For star SDSS J1742+2531 we were able to detect three FeI lines from which we deduced [Fe/H]=-4.80, from four CaII lines we derived [Ca/H]=-4.56, and from synthesis of the G-band we derived A(C)=7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3sigma) upper limit of [Fe/H]< -5.0 and measure the Ca abundance, with [Ca/H]=-5.0, and carbon, A(C)=6.90. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li)<1.8 for both stars. Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB companion, while the stars on the low-carbon band are genuine fossil records of a gas cloud that has also been enriched by a faint supernova (SN) providing carbon and the lighter elements. (Abridged)



rate research

Read More

94 - Tobias Buck 2019
The Milky Ways stellar disk exhibits a bimodality in the [Fe/H] vs. [$alpha$/Fe] plane, showing a distinct high-$alpha$ and low-$alpha$ sequence whose origin is still under debate. We examine the [Fe/H]-[$alpha$/Fe] abundance plane in cosmological hydrodynamical simulations of Milky Way like galaxies from the NIHAO-UHD project and show that the bimodal $alpha$-sequence is a generic consequence of a gas-rich merger at some time in the Galaxys evolution. The high-$alpha$ sequence evolves first in the early galaxies, extending to high metallicities, while it is the low-$alpha$ sequence that is formed after the gas-rich merger. The merger brings in fresh metal-poor gas diluting the interstellar mediums metallicity while keeping the [$alpha$/Fe] abundance almost unchanged. The kinematic, structural and spatial properties of the bimodal $alpha$-sequence in our simulations reproduces that of observations. In all simulations, the high-$alpha$ disk is old, radially concentrated towards the galaxys center and shows large scale heights. In contrast, the low-$alpha$ disk is younger, more radially extended and concentrated to the disk mid-plane. Our results show that the abundance plane is well described by these two populations that have been distributed radially across the disk by migration: at present-day in the solar neighbourhood, low-$alpha$ stars originate from both the inner and outer disk while most of the high-$alpha$ stars have migrated from the inner disk. We show that age dating the stars in the [Fe/H]-[$alpha$/Fe] plane can constrain the time of the low-$alpha$ sequence forming merger and conclude that $alpha$-bimodality is likely a not uncommon feature of disk galaxies.
We explore the possibility of planet formation in the carbon-rich protoplanetary disks of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] $geq$ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae (SNe) ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling timescale in the protoplanetary disks of CEMP stars to the expected disk lifetime (assuming dissipation via photoevaporation), we determine the maximum distance $r_{max}$ from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host stars [C/H] abundance. We then use our linear relation between $r_{max}$ and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational program to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the Big Bang.
The first massive stars triggered the onset of chemical evolution by releasing the first metals (elements heavier than helium) in the Universe. The nature of these stars and how the early chemical enrichment took place is still largely unknown. Rotational-induced mixing in the stellar interior can impact the nucleosynthesis during the stellar life of massive stars and lead to stellar ejecta having various chemical compositions. We present low and zero-metallicity 20, 25 and 40 $M_{odot}$ stellar models with various initial rotation rates and assumptions for the nuclear reactions rates. With increasing initial rotation, the yields of light (from $sim$ C to Al) and trans-iron elements are boosted. The trans-iron elements (especially elements heavier than Ba) are significantly affected by the nuclear reaction uncertainties. The chemical composition of the observed CEMP (carbon-enhanced metal-poor) stars CS29528-028 and HE0336+0113 are consistent with the chemical composition of the material ejected by a fast rotating 40~$M_{odot}$ model.
The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N2D+ with the luminosity of the central source and the FWHM of the line, and no correlation with the H2 column density. In combination with a previously observed set of 14 other molecules (Paper I) we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H2 states. Good overall fits to the observed data have been obtained the model. It is one of the first times that observations and modeling have been combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration.
We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا