No Arabic abstract
The Milky Ways stellar disk exhibits a bimodality in the [Fe/H] vs. [$alpha$/Fe] plane, showing a distinct high-$alpha$ and low-$alpha$ sequence whose origin is still under debate. We examine the [Fe/H]-[$alpha$/Fe] abundance plane in cosmological hydrodynamical simulations of Milky Way like galaxies from the NIHAO-UHD project and show that the bimodal $alpha$-sequence is a generic consequence of a gas-rich merger at some time in the Galaxys evolution. The high-$alpha$ sequence evolves first in the early galaxies, extending to high metallicities, while it is the low-$alpha$ sequence that is formed after the gas-rich merger. The merger brings in fresh metal-poor gas diluting the interstellar mediums metallicity while keeping the [$alpha$/Fe] abundance almost unchanged. The kinematic, structural and spatial properties of the bimodal $alpha$-sequence in our simulations reproduces that of observations. In all simulations, the high-$alpha$ disk is old, radially concentrated towards the galaxys center and shows large scale heights. In contrast, the low-$alpha$ disk is younger, more radially extended and concentrated to the disk mid-plane. Our results show that the abundance plane is well described by these two populations that have been distributed radially across the disk by migration: at present-day in the solar neighbourhood, low-$alpha$ stars originate from both the inner and outer disk while most of the high-$alpha$ stars have migrated from the inner disk. We show that age dating the stars in the [Fe/H]-[$alpha$/Fe] plane can constrain the time of the low-$alpha$ sequence forming merger and conclude that $alpha$-bimodality is likely a not uncommon feature of disk galaxies.
Radial migration is an important process in the Galactic disk. A few open clusters show some evidence on this mechanism but there is no systematic study. In this work, we investigate the role of radial migration on the Galactic disk based on a large sample of 146 open clusters with homogeneous metallicity and age from Netopil et al. and kinematics calculated from Gaia DR2. The birth site Rb, guiding radius Rg and other orbital parameters are calculated, and the migration distance |Rg-Rb| is obtained, which is a combination of metallicity, kinematics and age information. It is found that 44% open clusters have |Rg-Rb|< 1 kpc, for which radial migration (churning) is not significant. Among the remaining 56% open clusters with |Rg-Rb|> 1 kpc, young ones with t<1.0 Gyr tend to migrate inward, while older clusters usually migrate outward. Different mechanisms of radial migration between young and old clusters are suggested based on their different migration rates, Galactic locations and orbital parameters. For the old group, we propose a plausible way to estimate migration rate and obtain a reasonable value of 1.5(+-0.5) kpc/Gyr based on ten intermediate-age clusters at the outer disk, where the existence of several special clusters implies its complicate formation history.
Using a sample of nearly 140,000 primary red clump stars selected from the LAMOST and $Gaia$ surveys, we have identified a large sample of young [$alpha$/Fe]-enhanced stars with stellar ages younger than 6.0 Gyr and [$alpha$/Fe] ratios greater than 0.15 dex. The stellar ages and [$alpha$/Fe] ratios are measured from LAMOST spectra, using a machine learning method trained with common stars in the LAMOST-APOGEE fields (for [$alpha$/Fe]) and in the LAMOST-$Kepler$ fields (for stellar age). The existence of these young [$alpha$/Fe]-enhanced stars is not expected from the classical Galactic chemical evolution models. To explore their possible origins, we have analyzed the spatial distribution, and the chemical and kinematic properties of those stars and compared the results with those of the chemically thin and thick disk populations. We find that those young [$alpha$/Fe]-enhanced stars have distributions in number density, metallicity, [C/N] abundance ratio, velocity dispersion and orbital eccentricity that are essentially the same as those of the chemically thick disk population. Our results clearly show those so-called young [$alpha$/Fe]-enhanced stars are not really young but $genuinely$ $old$. Although other alternative explanations can not be fully ruled out, our results suggest that the most possible origin of these old stars is the result of stellar mergers or mass transfer.
In the course of the TOPoS (Turn Off Primordial Stars) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. We here present our analysis of six CEMP stars. Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0<=[Ca/H]< -2.1 and 7.12<=A(C)<=8.65. For star SDSS J1742+2531 we were able to detect three FeI lines from which we deduced [Fe/H]=-4.80, from four CaII lines we derived [Ca/H]=-4.56, and from synthesis of the G-band we derived A(C)=7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3sigma) upper limit of [Fe/H]< -5.0 and measure the Ca abundance, with [Ca/H]=-5.0, and carbon, A(C)=6.90. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li)<1.8 for both stars. Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB companion, while the stars on the low-carbon band are genuine fossil records of a gas cloud that has also been enriched by a faint supernova (SN) providing carbon and the lighter elements. (Abridged)
Stellar migration, whether due to trapping by transient spirals (churning), or to scattering by non-axisymmetric perturbations, has been proposed to explain the presence of stars in outer disks. After a review of the basic theory, we present compelling, but not yet conclusive, evidence that churning has been important in the outer disks of galaxies with type II (down-bending) profiles, while scattering has produced the outer disks of type III (up-bending) galaxies. In contrast, field galaxies with type I (pure exponential) profiles appear to not have experienced substantial migration. We conclude by suggesting work that would improve our understanding of the origin of outer disks.
We address the problem of the origin of massive stars, namely the origin, path and timescale of the mass flows that create them. Based on extensive numerical simulations, we propose a scenario where massive stars are assembled by large-scale, converging, inertial flows that naturally occur in supersonic turbulence. We refer to this scenario of massive-star formation as the Inertial-Inflow Model. This model stems directly from the idea that the mass distribution of stars is primarily the result of turbulent fragmentation. Under this hypothesis, the statistical properties of the turbulence determine the formation timescale and mass of prestellar cores, posing definite constraints on the formation mechanism of massive stars. We quantify such constraints by the analysis of a simulation of supernova-driven turbulence in a 250-pc region of the interstellar medium, describing the formation of hundreds of massive stars over a time of approximately 30 Myr. Due to the large size of our statistical sample, we can say with full confidence that massive stars in general do not form from the collapse of massive cores, nor from competitive accretion, as both models are incompatible with the numerical results. We also compute synthetic continuum observables in Herschel and ALMA bands. We find that, depending on the distance of the observed regions, estimates of core mass based on commonly-used methods may exceed the actual core masses by up to two orders of magnitude, and that there is essentially no correlation between estimated and real core masses.