Do you want to publish a course? Click here

Fast optimization of Multithreshold Entropy Linear Classifier

263   0   0.0 ( 0 )
 Added by Wojciech Czarnecki
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Multithreshold Entropy Linear Classifier (MELC) is a density based model which searches for a linear projection maximizing the Cauchy-Schwarz Divergence of dataset kernel density estimation. Despite its good empirical results, one of its drawbacks is the optimization speed. In this paper we analyze how one can speed it up through solving an approximate problem. We analyze two methods, both similar to the approximate solutions of the Kernel Density Estimation querying and provide adaptive schemes for selecting a crucial parameters based on user-specified acceptable error. Furthermore we show how one can exploit well known conjugate gradients and L-BFGS optimizers despite the fact that the original optimization problem should be solved on the sphere. All above methods and modifications are tested on 10 real life datasets from UCI repository to confirm their practical usability.



rate research

Read More

Multithreshold Entropy Linear Classifier (MELC) is a recent classifier idea which employs information theoretic concept in order to create a multithreshold maximum margin model. In this paper we analyze its consistency over multithreshold linear models and show that its objective function upper bounds the amount of misclassified points in a similar manner like hinge loss does in support vector machines. For further confirmation we also conduct some numerical experiments on five datasets.
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). The entropy search is successful approach to Bayesian optimization. However, for MBO, existing entropy-based methods ignore trade-off among objectives or introduce unreliable approximations. We propose a novel entropy-based MBO called Pareto-frontier entropy search (PFES) by considering the entropy of Pareto-frontier, which is an essential notion of the optimality of the multi-objective problem. Our entropy can incorporate the trade-off relation of the optimal values, and further, we derive an analytical formula without introducing additional approximations or simplifications to the standard entropy search setting. We also show that our entropy computation is practically feasible by using a recursive decomposition technique which has been known in studies of the Pareto hyper-volume computation. Besides the usual MBO setting, in which all the objectives are simultaneously observed, we also consider the decoupled setting, in which the objective functions can be observed separately. PFES can easily adapt to the decoupled setting by considering the entropy of the marginal density for each output dimension. This approach incorporates dependency among objectives conditioned on Pareto-frontier, which is ignored by the existing method. Our numerical experiments show effectiveness of PFES through several benchmark datasets.
In this paper, based on a fuzzy entropy feature selection framework, different methods have been implemented and compared to improve the key components of the framework. Those methods include the combinations of three ideal vector calculations, three maximal similarity classifiers and three fuzzy entropy functions. Different feature removal orders based on the fuzzy entropy values were also compared. The proposed method was evaluated on three publicly available biomedical datasets. From the experiments, we concluded the optimized combination of the ideal vector, similarity classifier and fuzzy entropy function for feature selection. The optimized framework was also compared with other six classical filter-based feature selection methods. The proposed method was ranked as one of the top performers together with the Correlation and ReliefF methods. More importantly, the proposed method achieved the most stable performance for all three datasets when the features being gradually removed. This indicates a better feature ranking performance than the other compared methods.
We develop parallel predictive entropy search (PPES), a novel algorithm for Bayesian optimization of expensive black-box objective functions. At each iteration, PPES aims to select a batch of points which will maximize the information gain about the global maximizer of the objective. Well known strategies exist for suggesting a single evaluation point based on previous observations, while far fewer are known for selecting batches of points to evaluate in parallel. The few batch selection schemes that have been studied all resort to greedy methods to compute an optimal batch. To the best of our knowledge, PPES is the first non-greedy batch Bayesian optimization strategy. We demonstrate the benefit of this approach in optimization performance on both synthetic and real world applications, including problems in machine learning, rocket science and robotics.
103 - Dilin Wang , Meng Li , Lemeng Wu 2019
Designing energy-efficient networks is of critical importance for enabling state-of-the-art deep learning in mobile and edge settings where the computation and energy budgets are highly limited. Recently, Liu et al. (2019) framed the search of efficient neural architectures into a continuous splitting process: it iteratively splits existing neurons into multiple off-springs to achieve progressive loss minimization, thus finding novel architectures by gradually growing the neural network. However, this method was not specifically tailored for designing energy-efficient networks, and is computationally expensive on large-scale benchmarks. In this work, we substantially improve Liu et al. (2019) in two significant ways: 1) we incorporate the energy cost of splitting different neurons to better guide the splitting process, thereby discovering more energy-efficient network architectures; 2) we substantially speed up the splitting process of Liu et al. (2019), which requires expensive eigen-decomposition, by proposing a highly scalable Rayleigh-quotient stochastic gradient algorithm. Our fast algorithm allows us to reduce the computational cost of splitting to the same level of typical back-propagation updates and enables efficient implementation on GPU. Extensive empirical results show that our method can train highly accurate and energy-efficient networks on challenging datasets such as ImageNet, improving a variety of baselines, including the pruning-based methods and expert-designed architectures.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا