Do you want to publish a course? Click here

Performance Optimization of a Fuzzy Entropy based Feature Selection and Classification Framework

87   0   0.0 ( 0 )
 Added by Zixiao Shen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, based on a fuzzy entropy feature selection framework, different methods have been implemented and compared to improve the key components of the framework. Those methods include the combinations of three ideal vector calculations, three maximal similarity classifiers and three fuzzy entropy functions. Different feature removal orders based on the fuzzy entropy values were also compared. The proposed method was evaluated on three publicly available biomedical datasets. From the experiments, we concluded the optimized combination of the ideal vector, similarity classifier and fuzzy entropy function for feature selection. The optimized framework was also compared with other six classical filter-based feature selection methods. The proposed method was ranked as one of the top performers together with the Correlation and ReliefF methods. More importantly, the proposed method achieved the most stable performance for all three datasets when the features being gradually removed. This indicates a better feature ranking performance than the other compared methods.



rate research

Read More

This paper presents a novel meta learning framework for feature selection (FS) based on fuzzy similarity. The proposed method aims to recommend the best FS method from four candidate FS methods for any given dataset. This is achieved by firstly constructing a large training data repository using data synthesis. Six meta features that represent the characteristics of the training dataset are then extracted. The best FS method for each of the training datasets is used as the meta label. Both the meta features and the corresponding meta labels are subsequently used to train a classification model using a fuzzy similarity measure based framework. Finally the trained model is used to recommend the most suitable FS method for a given unseen dataset. This proposed method was evaluated based on eight public datasets of real-world applications. It successfully recommended the best method for five datasets and the second best method for one dataset, which outperformed any of the four individual FS methods. Besides, the proposed method is computationally efficient for algorithm selection, leading to negligible additional time for the feature selection process. Thus, the paper contributes a novel method for effectively recommending which feature selection method to use for any new given dataset.
In this paper, we propose a novel weighted combination feature selection method using bootstrap and fuzzy sets. The proposed method mainly consists of three processes, including fuzzy sets generation using bootstrap, weighted combination of fuzzy sets and feature ranking based on defuzzification. We implemented the proposed method by combining four state-of-the-art feature selection methods and evaluated the performance based on three publicly available biomedical datasets using five-fold cross validation. Based on the feature selection results, our proposed method produced comparable (if not better) classification accuracies to the best of the individual feature selection methods for all evaluated datasets. More importantly, we also applied standard deviation and Pearsons correlation to measure the stability of the methods. Remarkably, our combination method achieved significantly higher stability than the four individual methods when variations and size reductions were introduced to the datasets.
In computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA) and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on three representative optimization problems on graph including modularity optimization from network science, Sherrington-Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph. High-quality solutions can be obtained with much less time consuming compared to traditional approaches.
A common approach for feature selection is to examine the variable importance scores for a machine learning model, as a way to understand which features are the most relevant for making predictions. Given the significance of feature selection, it is crucial for the calculated importance scores to reflect reality. Falsely overestimating the importance of irrelevant features can lead to false discoveries, while underestimating importance of relevant features may lead us to discard important features, resulting in poor model performance. Additionally, black-box models like XGBoost provide state-of-the art predictive performance, but cannot be easily understood by humans, and thus we rely on variable importance scores or methods for explainability like SHAP to offer insight into their behavior. In this paper, we investigate the performance of variable importance as a feature selection method across various black-box and interpretable machine learning methods. We compare the ability of CART, Optimal Trees, XGBoost and SHAP to correctly identify the relevant subset of variables across a number of experiments. The results show that regardless of whether we use the native variable importance method or SHAP, XGBoost fails to clearly distinguish between relevant and irrelevant features. On the other hand, the interpretable methods are able to correctly and efficiently identify irrelevant features, and thus offer significantly better performance for feature selection.
We introduce supervised feature ranking and feature subset selection algorithms for multivariate time series (MTS) classification. Unlike most existing supervised/unsupervised feature selection algorithms for MTS our techniques do not require a feature extraction step to generate a one-dimensional feature vector from the time series. Instead it is based on directly computing similarity between individual time series and assessing how well the resulting cluster structure matches the labels. The techniques are amenable to heterogeneous MTS data, where the time series measurements may have different sampling resolutions, and to multi-modal data.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا