Do you want to publish a course? Click here

Structural stability and uniformity of magnetic Pt13 nanoparticles in NaY zeolite

113   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on first-principles simulations, the structural stability and magnetic uniformity of Pt13 nanoparticles encapsulated in a NaY zeolite were investigated. Among 50 stable isomers in the gas phase, only 15 could be accommodated into a zeolite pore and severe structural rearrangements occured depending on whether the solid angle at the Pt vertex bound to the supercage was larger than 2 sr (i.e. icosahedron). When van der Waals forces were included, the global minimum was found to be a new L-shaped cubic wire that is unstable in the gas phase. The total magnetization of the encapsulated Pt13 decreases due to the stabilization of less coordinated isomers, with the majority of clusters charaterized by a total magnetization of 2 {mu}B, while the majority of free clusters exhibit a threefold value.



rate research

Read More

Using microemulsion methods, CoO-Pt core-shell nanoparticles (NPs), with diameters of nominally 4 nm, were synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and a suite of x-ray spectroscopies, including diffraction (XRD), absorption (XAS), absorption near-edge structure (XANES), and extended absorption fine structure (EXAFS), which confirmed the existence of CoO cores and pure Pt surface layers. Using a commercial magnetometer, the ac and dc magnetic properties were investigated over a range of temperature (2 K $leq$ T $leq$ 300 K), magnetic field ($leq$ 50 kOe), and frequency ($leq$ 1 kHz). The data indicate the presence of two different magnetic regimes whose onsets are identified by two maxima in the magnetic signals, with a narrow maximum centered at 6 K and a large one centered at 37 K. The magnetic responses in these two regimes exhibit different frequency dependences, where the maximum at high temperature follows a Vogel-Fulcher law, indicating a superparamagnetic (SPM) blocking of interacting nanoparticle moments and the maximum at low temperature possesses a power law response characteristic of a collective freezing of the nanoparticle moments in a superspin glass (SSG) state. This co-existence of blocking and freezing behaviors is consistent with the nanoparticles possessing an antiferromagnetically ordered core, with an uncompensated magnetic moment, and a magnetically disordered interlayer between CoO core and Pt shell.
241 - Y. Sundarayya , S.Srinath 2014
Homogeneous single phase GdCrO3 nanoparticles are synthesized by a modified-hydrothermal synthesis. The sample shows a compensation temperature at 128 K, below which the DC magnetization becomes negative and positive at low temperatures due to the competition between the two sublattice magnetization. At Neel temperature (168K), the line width and the intensity show an abrupt transition, revealed from electron paramagnetic resonance spectroscopy.
The magnetic behavior of truncated conical nanoparticles in patterned thin films is investigated as a function of their size and shape. Using a scaling technique, phase diagrams giving the relative stability of characteristic internal magnetic structures of the particles are obtained. The role of the uniaxial anisotropy in determining the magnetic properties of such systems is discussed, and a simple method for stablishing its strength is proposed.
We have calculated the low-field magnetic susceptibility $chi$ of a system consisting of non-interacting mono-dispersed nanoparticles using a classical statistical approach. The model makes use of the assumption that the axes of symmetry of all nanoparticles are aligned and oriented at a certain angle $psi$ with respect to the external magnetic field. An analytical expression for the temperature dependence of the susceptibility $chi(T)$ above the blocking temperature is obtained. The derived expression is a generalization of the Curie law for the case of anisotropic magnetic particles. We show that the normalized susceptibility is a universal function of the ratio of the temperature over the anisotropy constant for each angle $psi$. In the case that the easy-axis is perpendicular to the magnetic field the susceptibility has a maximum. The temperature of the maximum allows one to determine the anisotropy energy.
Magnetic nanoparticles (NP) of magnetite (Fe3O4) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through Transmission Electron Microscopy (TEM),magnetization M, and ac magnetic susceptibility measurements. The OA coated samples were produced with different magnetic concentrations (78, 76, and 65%) and the DA sample with 63% of Fe3O4. Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter ~ 5.5 nm. Magnetization measurements, performed in zero field cooled (ZFC) and field cooled (FC) processes under different external magnetic fields H, exhibited a maximum at a given temperature TB in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature TB decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase of TB. The observed behavior is related to the dipolar interaction (DI) between NP which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility Xac measurements, where the temperature in which X peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H vs. TB/TB(H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below TB, M vs. H curves show a coercive field (HC) that increases monotonically with decreasing temperature. The saturation magnetization (MS) follows the Blochs law and values of MS at room temperature as high as 78 emu/g were estimated, a result corresponding to ~80% of the bulk value. The overlap of M/MS vs. H/T curves for a given sample and the low HC at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/MS vs. H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا