Do you want to publish a course? Click here

Structural and Magnetic Properties of CoO-Pt core-shell nanoparticles

407   0   0.0 ( 0 )
 Added by Mark W. Meisel
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using microemulsion methods, CoO-Pt core-shell nanoparticles (NPs), with diameters of nominally 4 nm, were synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and a suite of x-ray spectroscopies, including diffraction (XRD), absorption (XAS), absorption near-edge structure (XANES), and extended absorption fine structure (EXAFS), which confirmed the existence of CoO cores and pure Pt surface layers. Using a commercial magnetometer, the ac and dc magnetic properties were investigated over a range of temperature (2 K $leq$ T $leq$ 300 K), magnetic field ($leq$ 50 kOe), and frequency ($leq$ 1 kHz). The data indicate the presence of two different magnetic regimes whose onsets are identified by two maxima in the magnetic signals, with a narrow maximum centered at 6 K and a large one centered at 37 K. The magnetic responses in these two regimes exhibit different frequency dependences, where the maximum at high temperature follows a Vogel-Fulcher law, indicating a superparamagnetic (SPM) blocking of interacting nanoparticle moments and the maximum at low temperature possesses a power law response characteristic of a collective freezing of the nanoparticle moments in a superspin glass (SSG) state. This co-existence of blocking and freezing behaviors is consistent with the nanoparticles possessing an antiferromagnetically ordered core, with an uncompensated magnetic moment, and a magnetically disordered interlayer between CoO core and Pt shell.



rate research

Read More

We present a systematic study of core-shell Au/Fe_3O_4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of <d> = (6.9pm 1.0) nm surrounded by Fe_3O_4 shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe_3O_4 core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below T_B = 59 K and a relaxed state well above T_B. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (H_{EX}) started to appear at T~40 K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the Fe_3O_4 shell) and spins located in the ordered region of the Fe_3O_4 shell.
The structure and strain of ultrathin CoO films grown on a Pt(001) substrate and on a ferromagnetic PtFe pseudomorphic layer on Pt(001) have been determined with insitu and real time surface x-ray diffraction. The films grow epitaxially on both surfaces with an in-plane hexagonal pattern that yields a pseudo-cubic CoO(111) surface. A refined x-ray diffraction analysis reveals a slight monoclinic distortion at RT induced by the anisotropic stress at the interface. The tetragonal contribution to the distortion results in a ratio c/a > 1, opposite to that found in the low temperature bulk CoO phase. This distortion leads to a stable Co2+ spin configuration within the plane of the film.
The utility of nanoscaled ferromagnetic particles requires both stabilized moments and maximized switching speeds. During reversal, the spatial modulation of the nanoparticle magnetization evolves in time, and the energy differences between each new configuration are accomodated by the absorption or emission spin waves with different wavelengths and energy profiles. The switching speed is limited by how quickly this spin wave energy is dissipated. We present here the first observation of dispersing spin waves in a nanoscaled system, using neutron scattering to detect spin waves in the CoO shells of exchange biased Co core- CoO shell nanoparticles. Their dispersion is little affected by finite size effects, but the spectral weight shifts to energies and wave vectors which increase with decreasing system size. Core-shell coupling leads to a substantial enhancement of the CoO spin wave population above its conventional thermal level, suggesting a new mechanism for dissipating core switching energy.
56 - E. Vatansever , Y. Yuksel 2017
Being inspired by a recent study [V. Dimitriadis et al. Phys. Rev. B textbf{92}, 064420 (2015)], we study the finite temperature magnetic properties of the spherical nanoparticles with core-shell structure including quenched (i) surface and (ii) interface nonmagnetic impurities (static holes) as well as (iii) roughened interface effects. The particle core is composed of ferromagnetic spins, and it is surrounded by a ferromagnetic shell. By means of Monte Carlo simulation based on an improved Metropolis algorithm, we implement the nanoparticles using classical Heisenberg Hamiltonians. Particular attention has also been devoted to elucidate the effects of the particle size on the thermal and magnetic phase transition features of these systems. For nanoparticles with imperfect surface layers, it is found that bigger particles exhibit lower compensation point which decreases gradually with increasing amount of vacancies, and vanishes at a critical value. In view of nanoparticles with diluted interface, our Monte Carlo simulation results suggest that there exists a region in the disorder spectrum where compensation temperature linearly decreases with decreasing dilution parameter. For nanoparticles with roughened interface, it is observed that the degree of roughness does not play any significant role on the variation of both the compensation point and critical temperature. However, the low temperature saturation magnetizations of the core and shell interface regions sensitively depend on the roughness parameter.
247 - Y. Sundarayya , S.Srinath 2014
Homogeneous single phase GdCrO3 nanoparticles are synthesized by a modified-hydrothermal synthesis. The sample shows a compensation temperature at 128 K, below which the DC magnetization becomes negative and positive at low temperatures due to the competition between the two sublattice magnetization. At Neel temperature (168K), the line width and the intensity show an abrupt transition, revealed from electron paramagnetic resonance spectroscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا