No Arabic abstract
We present an analysis of deep-UV Raman measurements of graphite, graphene and carbon nanotubes. For excitation energies above the strong optical absorption peak at the $M$ point in the Brillouin zone ($approx 4.7,text{eV}$), we partially suppress double-resonant scattering processes and observe the two-phonon density of states of carbon nanomaterials. The measured peaks are assigned to contributions from LO, TO, and LA phonon branches, supported by calculations of the phonon dispersion. Moreover, we gain access to the infrared-active $E_{1u}$ mode in graphite. By lowering the excitation energy and thus allowing double-resonant scattering processes, we demonstrate the rise of the textit{2D} mode in graphite with ultra-short phonon wave vectors.
We present a theoretical model to describe the double-resonant scattering process in arbitrary carbon nanotubes. We use this approach to investigate the defect-induced $D$ mode in CNTs and unravel the dependence of the $D$-mode frequency on the CNT diameter and on the energy of the resonant optical transition. Our approach is based on the symmetry of the hexagonal lattice and geometric considerations, hence the method is independent of the exact model that is chosen to describe the electronic band structure or the phonon dispersion. We finally clarify the diameter dependence of this Raman mode that was controversely discussed in the past and demonstrate that, depending on the experimental conditions, in general two different dependencies can be measured. We also prove that carbon nanotubes with arbitrary chiral index can exhibit a $D$ mode in their Raman spectrum, in contrast to previous symmetry-based arguments. Furthermore, we give a direct quantification of the curvature-induced phonon frequency corrections of the $D$-mode in carbon nanotubes with respect to graphite.
We present measurements of the $D$ Raman mode in graphene and carbon nanotubes at different laser excitation energies. The Raman mode around 1050 - 1150,cm$^{-1}$ originates from a double-resonant scattering process of longitudinal acoustic (LA) phonons with defects. We investigate its dependence on laser excitation energy, on the number of graphene layers and on the carbon nanotube diameter. We assign this Raman mode to so-called inner processes with resonant phonons mainly from the $Gamma-K$ high-symmetry direction. The asymmetry of the $D$ mode is explained by additional contributions from phonons next to the $Gamma-K$ line. Our results demonstrate the importance of inner contributions in the double-resonance scattering process and add a fast method to investigate acoustic phonons in graphene and carbon nanotubes by optical spectroscopy.
Raman spectroscopy on carbon nanotubes (CNT) yields a rich variety of information owing to the close interplay between electronic and vibrational properties. In this paper, we review the properties of double wall carbon nanotubes (DWCNTs). In particular, it is shown that SWCNT encapsulating C$_{60}$, so-called peapods, are transformed into DWCNTs when subject to a high temperature treatment. The inner tubes are grown in a catalyst free environment and do not suffer from impurities or defects that are usually encountered for as-grown SWCNTs or DWCNTs. As a consequence, the inner tubes are grown with a high degree of perfection as deduced from the unusually narrow radial breathing mode (RBM) lines. This apostrophizes the interior of the SWCNTs as a nano-clean room. The mechanism of the inner nanotube production from C$_{60}$ is discussed. We also report recent studies aimed at the simplification and industrial scaling up of the DWCNT production process utilizing a low temperature peapod synthesis method. A splitting of the RBMs of inner tubes is observed. This is related to the interaction between the two shells of the DWCNTs as the same inner tube type can be encapsulated in different outer ones. The sharp appearance of the inner tube RBMs allows a reliable assignment of the tube modes to (n,m) indexes and thus provides a precise determination of the relation between the tube diameter and the RBM frequencies.
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation feature and the dispersion of electronic structure around the center of Brillouin zone of a semiconducting SWNT (14, 13) is extracted.