Do you want to publish a course? Click here

A new era of sub-millimeter GRB afterglow follow-ups with the Greenland Telescope

222   0   0.0 ( 0 )
 Added by Yuji Urata
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A planned rapid submillimeter (submm) Gamma Ray Burst (GRBs) follow-up observations conducted using the Greenland Telescope (GLT) is presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high-altitude and dry weather porvides excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1) systematic detection of bright submm emissions originating from reverse shock (RS) in the early afterglow phase, (2) characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3) detections of GRBs as a result of the explosion of first-generation stars result of GRBs at a high redshift through systematic rapid follow ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.



rate research

Read More

A 12-m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) is to become one of the Very Long Baseline Interferometry (VLBI) stations at sub-millimeter (submm) regime, providing the longest baseline > 9,000 km to achieve an exceptional angular resolution of 20 micro arc sec at 350 GHz, which will enable us to resolve the shadow size of ~40 micro arc sec. The triangle with the longest baselines formed by the GLT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the Submillimeter Array (SMA) in Hawaii will play a key role for the M87 observations. We have been working on the image simulations based on realistic conditions for a better understanding of the possible observed images. In parallel, retrofitting of the telescope and the site developments are in progress. Based on three years of opacity monitoring at 225 GHz, our measurements indicate that the site is excellent for submm observations, comparable to the ALMA site. The GLT is also expected to make single-dish observations up to 1.5 THz.
213 - B. Gendre 2009
We present the observations of the afterglow of gamma-ray burst GRB 090102. Optical data taken by the TAROT, REM, GROND, together with publicly available data from Palomar, IAC and NOT telescopes, and X-ray data taken by the XRT instrument on board the Swift spacecraft were used. This event features an unusual light curve. In X-rays, it presents a constant decrease with no hint of temporal break from 0.005 to 6 days after the burst. In the optical, the light curve presents a flattening after 1 ks. Before this break, the optical light curve is steeper than that of the X-ray. In the optical, no further break is observed up to 10 days after the burst. We failed to explain these observations in light of the standard fireball model. Several other models, including the cannonball model were investigated. The explanation of the broad band data by any model requires some fine tuning when taking into account both optical and X-ray bands.
We describe the afterglows of the long gamma-ray-burst (GRB) 130427A within the context of a binary-driven hypernova (BdHN). The afterglows originate from the interaction between a newly born neutron star ($ u$NS), created by an Ic supernova (SN), and a mildly relativistic ejecta of a hypernova (HN). Such a HN in turn results from the impact of the GRB on the original SN Ic. The mildly relativistic expansion velocity of the afterglow ($Gamma sim 3$) is determined, using our model independent approach, from the thermal emission between $196$~s and $461$~s. The power-law in the optical and X-ray bands of the afterglow is shown to arise from the synchrotron emission of relativistic electrons in the expanding magnetized HN ejecta. Two components contribute to the injected energy: the kinetic energy of the mildly relativistic expanding HN and the rotational energy of the fast rotating highly magnetized $ u$NS. We reproduce the afterglow in all wavelengths from the optical ($10^{14}$~Hz) to the X-ray band ($10^{19}$~Hz) over times from $604$~s to $5.18times 10^6$~s relative to the Fermi-GBM trigger. Initially, the emission is dominated by the loss of kinetic energy of the HN component. After $10^5$~s the emission is dominated by the loss of rotational energy of the $ u$NS, for which we adopt an initial rotation period of $2$~ms and a dipole plus quadrupole magnetic field of $lesssim ! 7times 10^{12}$~G or $sim ! 10^{14}$~G. This scenario with a progenitor composed of a CO$_{rm core}$ and a NS companion differs from the traditional ultra-relativistic-jetted treatments of the afterglows originating from a single black hole.
GRB 130427A was the brightest gamma-ray burst detected in the last 30 years. With an equivalent isotropic energy output of $8.5times10^{53}$ erg and redshift $z=0.34$, it uniquely combined very high energetics with a relative proximity to Earth. As a consequence, its X-ray afterglow has been detected by sensitive X-ray observatories such as XMM-Newton and Chandra for a record-breaking baseline longer than 80 million seconds. We present the X-ray light-curve of this event over such an interval. The light-curve shows a simple power-law decay with a slope $alpha = 1.309 pm 0.007$ over more than three decades in time (47 ks - 83 Ms). We discuss the consequences of this result for a few models proposed so far to interpret GRB 130427A, and more in general the significance of this outcome in the context of the standard forward shock model. We find that this model has difficulty in explaining our data, in both cases of constant density and stellar wind circumburst media, and requires far-fetched values for the physical parameters involved.
In this work we present spectra of all $gamma$-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31-03-2017. In total, we obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimize biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneous sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We constrain the fraction of dark bursts to be < 28 per cent and we confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we provide a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by $sim$ 33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا