Do you want to publish a course? Click here

The X-shooter GRB afterglow legacy sample (XS-GRB)

63   0   0.0 ( 0 )
 Added by Jonatan Selsing
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we present spectra of all $gamma$-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31-03-2017. In total, we obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimize biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneous sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We constrain the fraction of dark bursts to be < 28 per cent and we confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we provide a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by $sim$ 33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening universe.



rate research

Read More

214 - B. Gendre 2009
We present the observations of the afterglow of gamma-ray burst GRB 090102. Optical data taken by the TAROT, REM, GROND, together with publicly available data from Palomar, IAC and NOT telescopes, and X-ray data taken by the XRT instrument on board the Swift spacecraft were used. This event features an unusual light curve. In X-rays, it presents a constant decrease with no hint of temporal break from 0.005 to 6 days after the burst. In the optical, the light curve presents a flattening after 1 ks. Before this break, the optical light curve is steeper than that of the X-ray. In the optical, no further break is observed up to 10 days after the burst. We failed to explain these observations in light of the standard fireball model. Several other models, including the cannonball model were investigated. The explanation of the broad band data by any model requires some fine tuning when taking into account both optical and X-ray bands.
We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift-XRT, and Chandra. A spectral component in addition to an absorbed power-law is required at $>4sigma$ significance, and its spectral shape varies between two observation epochs at $2times10^5$ and $10^6$ seconds after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch. An additive black body or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant ($10^8$ cm), while the second powerlaw component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi-LAT.
118 - F. Bufano 2011
During the last ten years, observations of long-duration gamma-ray bursts brought to the conclusion that at least a fraction of them is associated with bright supernovae of type Ib/c. In this talk, after a short review on the previously observed GRB-SN connection cases, we present the recent case of GRB 100316/SN 2010bh. In particular, during the observational campaign of SN 2010bh, a pivotal role was played by VLT/X-shooter, sampling with unique high quality data the spectral energy distribution of the early evolution phases from the UV to the K band.
We present a comprehensive temporal and spectral analysis of the long Swift GRB 120327A afterglow data to investigate the possible causes of the observed early time colour variations. We collected data from various instruments/telescopes in different bands (X-rays, ultra- violet, optical and near-infrared) and determined the shapes of the afterglow early-time light curves. We studied the overall temporal behaviour and the spectral energy distributions from early to late times. The ultra-violet, optical, and near-infrared light curves can be modelled with a single power-law component between 200 and 2e4 s after the burst event. The X-ray light curve shows a canonical steep-shallow-steep behaviour, typical of long gamma-ray bursts. At early times a colour variation is observed in the ultra-violet/optical bands, while at very late times a hint of a re-brightening is visible. The observed early time colour change can be explained as a variation in the intrinsic optical spectral index, rather than an evolution of the optical extinction.
The optical-infrared afterglow of the LAT-detected long duration burst, GRB 090902B, has been observed by several instruments. The earliest detection by ROTSE-IIIa occurred 80 minutes after detection by the GBM instrument onboard the Fermi Gamma-Ray Space Telescope, revealing a bright afterglow and a decay slope suggestive of a reverse shock origin. Subsequent optical-IR observations followed the light curve for 6.5 days. The temporal and spectral behavior at optical-infrared frequencies is consistent with synchrotron fireball model predictions; the cooling break lies between optical and XRT frequencies ~ 1.9 days after the burst. The inferred electron energy index is $p = 1.8 pm 0.2$, which would however imply an X-ray decay slope flatter than observed. The XRT and LAT data have similar spectral indices and the observed steeper value of the LAT temporal index is marginally consistent with the predicted temporal decay in the radiative regime of the forward shock model. Absence of a jet break during the first 6 days implies a collimation-corrected $gamma$-ray energy $E_{gamma} > 2.2times10^{52}rm$ ergs, one of the highest ever seen in a long-duration GRBs. More events combining GeV photon emission with multi-wavelength observations will be required to constrain the nature of the central engine powering these energetic explosions and to explore the correlations between energetic quanta and afterglow emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا