Do you want to publish a course? Click here

Growth of asteroids, planetary embryos and Kuiper belt objects by chondrule accretion

161   0   0.0 ( 0 )
 Added by Anders Johansen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas-drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo run-away accretion of chondrules within ~3 Myr, forming planetary embryos up to Mars sizes along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size-sorting of chondrules consistent with chondrites. Accretion of mm-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disk life time outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles for the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.



rate research

Read More

Chondrules are one of the most primitive elements that can serve as a fundamental clue as to the origin of our Solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that corresponds to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s$^{-1}$. The previous simulations show that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct $N$-body simulations. As found by the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-planetesimal collisions can achieve the impact velocity of about 2.5 km s$^{-1}$ or higher, as protoplanets approach the isolation mass ($M_{p,iso}$). Assuming that the ejected mass is a fraction ($F_{ch}$) of colliding planetesimals mass, we show that the resultant abundance of chondrules is formulated well by $F_{ch}M_{p,iso}$, as long as the formation of protoplanets is completed within a given disk lifetime. We perform a parameter study and examine how the abundance of chondrules and their formation timing change. We find that the impact jetting scenario generally works reasonably well for a certain range of parameters, while more dedicated work would be needed to include other physical processes that are neglected in this work and to examine their effects on chondrule formation.
Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power-laws. The cold population has a bright-end slope, $alpha_{textrm{1}}=1.5_{-0.2}^{+0.4}$, and break magnitude, $H_{textrm{B}}=6.9_{-0.2}^{+0.1}$ (r-band). The hot population has a shallower bright-end slope of, $alpha_{textrm{1}}=0.87_{-0.2}^{+0.07}$, and break magnitude $H_{textrm{B}}=7.7_{-0.5}^{+1.0}$. Both populations share similar faint end slopes of $alpha_2sim0.2$. We estimate the masses of the hot and cold populations are $sim0.01$ and $sim3times10^{-4} mbox{ M$_{bigoplus}$}$. The broken power-law fit to the Trojan H-distribution has $alpha_textrm{1}=1.0pm0.2$, $alpha_textrm{2}=0.36pm0.01$, and $H_{textrm{B}}=8.3$. The KS test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide field survey data suggest that the brightest few hot objects, with $H_{textrm{r}}lesssim3$, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.
We introduce a new computational technique for searching for faint moving sources in astronomical images. Starting from a maximum likelihood estimate for the probability of the detection of a source within a series of images, we develop a massively parallel algorithm for searching through candidate asteroid trajectories that utilizes Graphics Processing Units (GPU). This technique can search over 10^10 possible asteroid trajectories in stacks of the order 10-15 4K x 4K images in under a minute using a single consumer grade GPU. We apply this algorithm to data from the 2015 campaign of the High Cadence Transient Survey (HiTS) obtained with the Dark Energy Camera (DECam). We find 39 previously unknown Kuiper Belt Objects in the 150 square degrees of the survey. Comparing these asteroids to an existing model for the inclination distribution of the Kuiper Belt we demonstrate that we recover a KBO population above our detection limit consistent with previous studies. Software used in this analysis is made available as an open source package.
The four longest period Kuiper belt objects have orbital periods close to integer ratios with each other. A hypothetical planet with orbital period $sim$17,117 years, semimajor axis $sim$665 AU, would have N/1 and N/2 period ratios with these four objects. The orbital geometries and dynamics of resonant orbits constrain the orbital plane, the orbital eccentricity and the mass of such a planet, as well as its current location in its orbital path.
The origin of Uranus and Neptune remains a challenge for planet formation models. A potential explanation is that the planets formed from a population of a few planetary embryos with masses of a few Earth masses which formed beyond Saturns orbit and migrated inwards. These embryos can collide and merge to form Uranus and Neptune. In this work we revisit this formation scenario and study the outcomes of such collisions using 3D hydrodynamical simulations. We investigate under what conditions the perfect-merging assumption is appropriate, and infer the planets final masses, obliquities and rotation periods, as well as the presence of proto-satellite disks. We find that the total bound mass and obliquities of the planets formed in our simulations generally agree with N-body simulations therefore validating the perfect-merging assumption. The inferred obliquities, however, are typically different from those of Uranus and Neptune, and can be roughly matched only in a few cases. In addition, we find that in most cases the planets formed in this scenario rotate faster than Uranus and Neptune, close to break-up speed, and have massive disks. We therefore conclude that forming Uranus and Neptune in this scenario is challenging, and further research is required. We suggest that future planet formation models should aim to explain the various physical properties of the planets such as their masses, compositions, obliquities, rotation rates and satellite systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا