Do you want to publish a course? Click here

Typing Classes and Mixins with Intersection Types

163   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2015
and research's language is English
 Authors Jan Bessai




Ask ChatGPT about the research

We study an assignment system of intersection types for a lambda-calculus with records and a record-merge operator, where types are preserved both under subject reduction and expansion. The calculus is expressive enough to naturally represent mixins as functions over recursively defined classes, whose fixed points, the objects, are recursive records. In spite of the double recursion that is involved in their definition, classes and mixins can be meaningfully typed without resorting to neither recursive nor F-bounded polymorphic types. We then adapt mixin construct and composition to Java and C#, relying solely on existing features in such a way that the resulting code remains typable in the respective type systems. We exhibit some example code, and study its typings in the intersection type system via interpretation into the lambda-calculus with records we have proposed.



rate research

Read More

In recent work, we have developed a session types discipline for a calculus that features the usual constructs for session establishment and communication, but also two novel constructs that enable communicating processes to be stopped, duplicated, or discarded at runtime. The aim is to understand whether known techniques for the static analysis of structured communications scale up to the challenging context of context-aware, adaptable distributed systems, in which disciplined interaction and runtime adaptation are intertwined concerns. In this short note, we summarize the main features of our session-typed framework with runtime adaptation, and recall its basic correctness properties. We illustrate our framework by means of examples. In particular, we present a session representation of supervision trees, a mechanism for enforcing fault-tolerant applications in the Erlang language.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations. We introduce a program logic with L{o}b induction for reasoning about the contextual equivalence of programs.
Garcia and Cimini study a type inference problem for the ITGL, an implicitly and gradually typed language with let-polymorphism, and develop a sound and complete inference algorithm for it. Soundness and completeness mean that, if the algorithm succeeds, the input term can be translated to a well-typed term of an explicitly typed blame calculus by cast insertion and vice versa. However, in general, there are many possible translations depending on how type variables that were left undecided by static type inference are instantiated with concrete static types. Worse, the translated terms may behave differently---some evaluate to values but others raise blame. In this paper, we propose and formalize a new blame calculus $lambda^{textsf{DTI}}_{textsf{B}}$ that avoids such divergence as an intermediate language for the ITGL. A main idea is to allow a term to contain type variables (that have not been instantiated during static type inference) and defer instantiation of these type variables to run time. We introduce dynamic type inference (DTI) into the semantics of $lambda^{textsf{DTI}}_{textsf{B}}$ so that type variables are instantiated along reduction. The DTI-based semantics not only avoids the divergence described above but also is sound and complete with respect to the semantics of fully instantiated terms in the following sense: if the evaluation of a term succeeds (i.e., terminates with a value) in the DTI-based semantics, then there is a fully instantiated version of the term that also succeeds in the explicitly typed blame calculus and vice versa. Finally, we prove the gradual guarantee, which is an important correctness criterion of a gradually typed language, for the ITGL.
167 - Jakob Rehof 2015
This volume contains a final and revised selection of papers presented at the Seventh Workshop on Intersection Types and Related Systems (ITRS 2014), held in Vienna (Austria) on July 18th, affiliated with TLCA 2014, Typed Lambda Calculi and Applications (held jointly with RTA, Rewriting Techniques and Applications) as part of FLoC and the Vienna Summer of Logic (VSL) 2014. Intersection types have been introduced in the late 1970s as a language for describing properties of lambda calculus which were not captured by all previous type systems. They provided the first characterisation of strongly normalising lambda terms and have become a powerful syntactic and semantic tool for analysing various normalisation properties as well as lambda models. Over the years the scope of research on intersection types has broadened. Recently, there have been a number of breakthroughs in the use of intersection types and similar technology for practical purposes such as program analysis, verification and concurrency, and program synthesis. The aim of the ITRS workshop series is to bring together researchers working on both the theory and practical applications of systems based on intersection types and related approaches (e.g., union types, refinement types, behavioral types).
The Message Passing Interface (MPI) framework is widely used in implementing imperative pro- grams that exhibit a high degree of parallelism. The PARTYPES approach proposes a behavioural type discipline for MPI-like programs in which a type describes the communication protocol followed by the entire program. Well-typed programs are guaranteed to be exempt from deadlocks. In this paper we describe a type inference algorithm for a subset of the original system; the algorithm allows to statically extract a type for an MPI program from its source code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا